
Journal of Computational Physics 469 (2022) 111543
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Multifidelity multilevel Monte Carlo to accelerate approximate 

Bayesian parameter inference for partially observed stochastic 

processes

David J. Warne a,b,∗, Thomas P. Prescott c,d, Ruth E. Baker d, 
Matthew J. Simpson a,b

a School of Mathematical Sciences, Faculty of Science, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
b Centre for Data Science, QUT, Brisbane, Queensland 4001, Australia
c The Alan Turing Institute, London, NW1 2DB, United Kingdom
d Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 November 2021
Received in revised form 29 May 2022
Accepted 11 August 2022
Available online 19 August 2022

Keywords:
Bayesian inference
Approximate Bayesian computation
Multifidelity rejection sampling
Multilevel Monte Carlo
Partially observed Markov processes
Biochemical reaction networks

Models of stochastic processes are widely used in almost all fields of science. Theory 
validation, parameter estimation, and prediction all require model calibration and statistical 
inference using data. However, data are almost always incomplete observations of reality. 
This leads to a great challenge for statistical inference because the likelihood function will 
be intractable for almost all partially observed stochastic processes. This renders many 
statistical methods, especially within a Bayesian framework, impossible to implement. 
Therefore, computationally expensive likelihood-free approaches are applied that replace 
likelihood evaluations with realisations of the model and observation process. For 
accurate inference, however, likelihood-free techniques may require millions of expensive 
stochastic simulations. To address this challenge, we develop a new method based 
on recent advances in multilevel and multifidelity methods for parameter inference 
using partially observed Markov processes. Our novel approach combines the multilevel 
Monte Carlo telescoping summation, applied to a sequence of approximate Bayesian 
posterior targets, with a multifidelity rejection sampler that learns from computationally 
inexpensive model approximations to minimise the number of computationally expensive 
exact simulations required for accurate inference. We present the derivation of our new 
algorithm for likelihood-free Bayesian inference, discuss practical implementation details, 
and demonstrate substantial performance improvements. Using examples from systems 
biology, we demonstrate improvements of more than two orders of magnitude over 
standard rejection sampling techniques. Our approach is generally applicable to accelerate 
other sampling schemes, such as sequential Monte Carlo, to enable feasible Bayesian 
analysis for realistic practical applications in physics, chemistry, biology, epidemiology, 
ecology and economics. We provide source code implementations of our methods and 
demonstrations (available at https://github .com /davidwarne /MLMCandMultifidelityForABC).
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1. Introduction

Stochastic processes are used to model complex systems in almost all fields of science and engineering. Partially observed 
stochastic processes result in some of the most computationally challenging problems for Bayesian inference [1–3]. Given 
the ubiquity of stochastic processes for real applications it is essential that efficient methods are developed to enable the 
analysis of modern high resolution data sets without sacrificing accuracy.

An important application of stochastic processes occurs in the study of cellular processes [4,5]. Here, stochastic models of 
biochemical reaction networks often provide a more accurate description of system dynamics than deterministic models [6]. 
This is largely due to intrinsic noise in the system dynamics of many biochemical processes that are significantly influenced 
by relatively low populations of certain chemical species [7]. For example, in eukaryotic cells, molecules that regulate gene 
expression occur in relatively low numbers; as a result, stochastic fluctuations have a direct effect on the production rates 
of proteins [4,8,9]. In addition, there are other interesting phenomena that occur in biological systems that can only be cap-
tured by stochastic models, for example, self-induced stochastic resonance [10–12], stochastic focusing [13], and stochastic 
bi-stability [14,15].

To quantify uncertainty in parameters or predictions, it is typical to consider an expectation of a function of an unknown 
vector of model parameters, θ ∈ �, conditional on some observational data, D,

E [ f (θ)] =
∫
�

f (θ)p(θ | D)dθ , (1)

where p(θ |D) is the Bayesian posterior probability density [16],

p(θ | D) = L(θ;D)p(θ)

p(D)
. (2)

Here, p(θ) is the a priori probability density of unknown parameters, L(θ; D) is the likelihood function that maps a param-
eter vector θ to the probability of the observations D, and p(D) is a normalising constant often referred to as the evidence. 
The function f (·) can be any scalar function of the parameters θ . For example, Equation (1) could represent a posterior 
moment, probability density or cumulative probability. Similarly f (·) could include a model prediction to enable equivalent 
expectation of the posterior predictive distribution.

Computational challenges arise due to the evidence term, given by

p(D) =
∫
�

L(θ;D)p(θ)dθ . (3)

This term is rarely tractable and the expectation in Equation (1) must be numerically estimated using sampling techniques, 
such as Markov chain Monte Carlo (MCMC) [17,18] and sequential Monte Carlo (SMC) [19], that only require point-wise 
evaluation of the likelihood function, L(θ; D).

For partially observed Markov processes, point-wise evaluation of the likelihood requires the solution to the forward 
Kolmogorov equation, which must be computed approximately. Therefore, standard Bayesian tools cannot be applied and 
likelihood-free methods are needed, such as approximate Bayesian computation (ABC) [20–22], pseudo-marginal meth-
ods [23–25], and Bayesian synthetic likelihood (BSL) [26–28]. In the machine learning literature, there are a multitude 
of likelihood-free, or simulation-based, approaches available [31], for example the use of deep neural networks to learn a 
surrogate model of the posterior [29] or the likelihood [30]. Regardless of the likelihood-free approach, realisations of the 
stochastic model are generated by stochastic simulation in place of likelihood function evaluation. Thus, the computational 
cost of evaluating Equation (1) depends on the efficiency of the stochastic simulation algorithm and the posterior sampler 
used as a basis for likelihood-free inference. For example, ABC can be implemented using either rejection sampling [32–34], 
MCMC [35] or SMC approaches [36–38]. However, if the model is even moderately expensive then such techniques are still 
infeasible.

Recently, there has been substantial research activity in the application of approximate model simulations and posterior 
samplers in combination with bias correction adjustments to accelerate likelihood-free applications that would be imprac-
tical otherwise. Techniques such as transport maps [44] and moment-matching transforms [45] aim to transform a set of 
approximate posterior samples, using a surrogate or reduced model, into posterior samples under an expensive exact model. 
Other approaches such as preconditioning utilise approximate models to inform efficient proposal mechanisms [45]. Various 
early-rejection and delayed-acceptance schemes [39–43] probabilistically simulate the accurate model based on the rejec-
tion/acceptance status of an approximation; this family of methods is generalised for ABC schemes under the multifidelity 
framework [46–48].

There has also been substantial research in the last decade on the use of control variates to improve the rate of 
convergence in mean-square of Monte Carlo estimates to expectations. In particular, the multilevel Monte Carlo (MLMC) 
method [49,50] expands an expectation as a telescoping summation of bias corrections and achieves variance reductions by 
exploiting path-wise convergence properties of numerical schemes for solving stochastic differential equations (SDEs) [51]
2
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or discrete-state Markov processes [52–54]. Recently, the MLMC telescoping summation approach has also been successfully 
applied to Bayesian inference [55–59], as per Equation (1), including ABC-based samplers [60–62].

Many of the above approaches use approximate simulations in ways that are not always mutually exclusive. However, it 
is an open question as to how these various schemes could be combined to obtain compounding effects in performance.

1.1. Contribution

In this work, we derive and demonstrate an effective method for approximate Bayesian inference that combines the 
benefits of multifidelity ABC sampling with that of variance reduction with MLMC applied to the expectations with respect 
to an ABC posterior density. Acknowledging the wide range of variations in these algorithm classes, we specifically consider 
a natural application of these approaches to rejection samplers and extend the methods of Prescott and Baker [46], and 
Warne et al. [62]. Specifically, we apply the MLMC telescoping summation of Warne et al. [62] to the multifidelity ABC 
sampler of Prescott and Baker [46] including practical implementation of an adaptive tuning scheme for the multifidelity 
approach [63]. These methods combined achieve multiple orders of magnitude improvement over direct ABC rejection sam-
pling. In addition, for situations where rejection sampling is practically intractable, our methodology is equally extendable 
to other sampling approaches, such as SMC, using developments by Prescott and Baker [47] and Jasra et al. [61]. Using 
biochemical reaction networks as a characteristic application area, we present key computational features of ABC methods 
and introduce the fundamental algorithms developed by Prescott and Baker [46] and Warne et al. [62]. We then highlight 
the distinct features of the inference problem exploited by each approach to accelerate ABC rejection sampling, and derive 
our novel approach by leveraging the complementary nature of these features. We then explore various performance results 
using stochastic models of Michaelis–Menten enzyme kinetics and the repressilator gene regulatory network. These exam-
ples enable us to establish requirements for practical application of our approach and provide rules-of-thumb to simplify the 
tuning of algorithm parameters. Finally, we demonstrate the efficacy of our multifidelity MLMC approach using a challenging 
model of a two–step MAPK cascade reaction, which forms the basis for many real biological functions such as cell-to-cell 
signalling through the epithelial growth factor receptor (EGFR) [64,65]. Our results demonstrate the potential of multilevel 
and multifidelity methods to accelerate ABC sampling by several orders of magnitude.

2. Methods

In this section we describe standard numerical methods for simulation and inference of stochastic biochemical network 
models [22,66,67]. Then we present recent developments in MLMC [22,62] and multifidelity [46] methods for inference, and 
develop novel extensions that achieve the benefits from both the MLMC and multifidelity approaches. Finally, we highlight 
practical challenges and provide guidelines for the application and tuning of our new method.

2.1. Stochastic models of biochemical reaction networks

We consider biochemical reaction network models that involve a well-mixed population of N chemical species, 
X1, X2, . . . , XN , that react via a network of M chemical reactions,

N∑
i=1

ν−
i, jXi →

N∑
i=1

ν+
i, jXi, j = 1,2, . . . ,M,

where ν−
i, j and ν+

i, j are, respectively, the reactant and product stoichiometries for species Xi in reaction j. Given the state 
of the system at time t , Xt = [X1,t, X2,t, . . . , XN ,t]T with Xi,t denoting the copy number of species Xi at time t , it can be 
shown that, for a sufficiently small time interval [t, t + �t), the probability of reaction j occurring within this interval is 
proportional to a j(Xt)�t where a j(Xt) is the propensity function of reaction j. Generally, the propensity function will take 
the form

a j(Xt, θ) = k j

N∏
i=1

ν−
i, j!

(
Xi,t

ν−
i, j

)
,

where k j is the non-dimensionalised kinetic rate parameter for reaction j. However, other more complex forms are also 
possible that may depend on a general parameter vector such as θ = [k1, k2, . . . , kM, λ] where λ could include other pa-
rameters like hill constants, observation error, or domain sizes.

Mathematically, the stochastic dynamics of a biochemical network is governed by a discrete-state, continuous-time 
Markov process [67–70]. The transitional density function of this process, p(Xt | Xs, θ), describes the probability of the sys-
tem state at time t given the state at a previous time s. To obtain p(Xt | Xs, θ) one needs to solve the forward Kolmogorov 
equation, also referred to as the chemical master equation (CME) [67,71],

dp(Xt | Xs), θ

dt
=

M∑
a j(Xt − ν j; θ)p(Xt − ν j | Xs, θ) − a j(Xt; θ)p(Xt | Xs, θ), (4)
j=1

3
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where ν j is the state change corresponding to the occurrence of reaction j, that is ν j = [ν+
1, j − ν−

1, j, ν
+
2, j − ν−

2, j, . . . , ν
+
N , j −

ν−
N , j]T. While we focus on Markov processes in this work, equivalent concepts exist for non-Markovian systems; though 

with more complexity [9]. Our new methods may be generalised to non-Markovian models without substantial modification.

2.1.1. Stochastic simulation methods
The CME is intractable for all but the simplest of models [22,66,67]. As a result, exact stochastic simulation [68,72,73] is 

required to study the system behaviour without introducing potentially substantial bias [45]. Stochastic simulation schemes 
generate realisations of the network state, Xt , from some initial time t0 up to a termination time T . Exact stochastic simu-
lation schemes, such as Gillespie’s direct method [68] (Algorithm 1), simulate every reaction event, and are computationally 
prohibitive for systems with very large copy numbers or very high reaction rates.

Algorithm 1 Gillespie’s direct method for stochastic simulation.
1: Initialise t = t0 and X = x0;
2: loop
3: Set a0 ← ∑M

j=1 a j(X);
4: Sample next reaction time �t ∼ Exp(a0);
5: if t + �t > T then
6: return
7: else
8: Select reaction j ∈ [1, 2, . . . , M] with probabilities

P ( j = 1) = a1(X)/a0, P ( j = 2) = a2(X)/a0, . . . , P ( j =M) = aM(X)/a0;
9: Set X ← X + ν j and t ← t + �t .

10: end if
11: end loop

Various approximate stochastic simulation schemes, such as the tau-leaping method [74] (Algorithm 2), can be ap-
plied [67,74–77] to improve the computational performance, but there will be bias incurred due to the simplifying approx-
imations [22,78]. For example, assume the propensities do not change substantially over a time interval of length τ . The 
resulting sample path Zt will be a discrete-time Markov chain approximation to a true path Xt from the full continuous-time 
process.

Algorithm 2 The tau-leaping method for approximate stochastic simulation.
1: Initialise t = t0, and Z = x0;
2: while t + τ > T do
3: Generate event counts, Y j ∼ Po(a j(Z)τ ), for j = 1, 2, . . . , M;
4: Set Z ← Z + ∑M

j=1 Y jν j , and t ← t + τ .
5: end while

2.1.2. Acceleration using multilevel Monte Carlo
Often the goal of stochastic simulation is to estimate the expectation, E [ f (XT )], where f (·) is a function of the process 

state at time t = T > 0. Note that this expectation can, through the specification of f (·), resolve to any raw or central 
moment, it may also be used to estimate the full probability density or cumulative distribution of the system state XT [62,
79,80]. MLMC provides a mechanism to exploit approximations that computationally accelerate the estimation [22,51,53]. 
Assume we have a stochastic process {Xt}t≥0, such as biochemical reaction network model, that is computationally expensive 
to simulate with the Gillespie direct method (Algorithm 1) or equivalent. Now consider a sequence of L stochastic processes, 
{{Zt,�}t≥0}�=L

�=1, that approximate {Xt}t≥0. This sequence is constructed such that the bias decreases and computational cost 
increases with �. For example, {Zt,�}t≥0 could be a tau-leaping approximation with time step τ� = c2−� and c constant for 
all � = 1, 2, . . . , L. The insight of Giles [51] was to expand the desired expectation as a telescoping summation by exploiting 
linearity of expectation,

E [ f (XT )] = E
[

f (ZT ,1)
] +E

[
f (XT ) − f (ZT ,L)

] +
L∑

�=2

E
[

f (ZT ,�) − f (ZT ,�−1)
]
, (5)

where each of the difference terms acts to correct for the bias of the initial biased approximation, E 
[

f (ZT ,1)
]
. Giles [51]

demonstrated that substantial computational improvements can be obtained if positive correlations can be induced between 
the terms in the bias corrections, that is between ZT ,� and ZT ,�−1 for � = 2, . . . , L, and between XT and ZT ,L . For SDEs and 
discrete-state continuous-time Markov processes, coupling schemes that induce sufficiently strong positive correlations have 
been well studied [22,50,52,54] and performance improvements of many orders of magnitude can be obtained without any 
loss in accuracy in terms of mean-square error.
4
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2.2. Approximate Bayesian computation

For the purposes of inference, the likelihood function for sequences of n observations, denoted by Yobs = [yobs(t1), yobs(t2),

. . . , yobs(tn)], is given by

p(Yobs | θ) =
∫

Xn+1

p(Yobs,Xt0 , . . . ,Xtn | θ)

n∏
i=0

dxti

=
∫

Xn+1

p(Xt0)dXt0

n∏
i=1

g(yobs(ti) | Xti , θ)p(Xti | Xti−1 , θ)dXti , (6)

where g(yobs(ti) | Xti , θ) is the probability density of noisy observation yobs(ti), given the true state, Xti ∈X ⊆NN , at time 
ti , and p(Xti | Xti−1 , θ) is the solution to the CME for the state transition over the time interval (ti−1, ti]. The intractability 
of the CME immediately implies the intractability of the Bayesian inference problem. However, depending on the structure 
of the observation process, Equation (6) may still be intractable even when Equation (4) has an analytical solution. There-
fore, almost any practical application of partially observed continuous-time Markov processes will require some form of 
likelihood-free inference.

ABC, pseudo-marginal methods and BSL are all possible approaches to avoid the dependence of Bayesian inference on 
the likelihood (Equation (6)) by generating simulated data from the likelihood using exact stochastic simulation along with 
the observation noise process. Here, we focus on the ABC approach that is based on the posterior approximation,

p(θ | Yobs) ≈ p(θ | ρ(Yobs,Ys) ≤ ε) ∝ P (ρ(Yobs,Ys) ≤ ε | θ)p(θ), (7)

where ρ(Yobs, Ys) is a discrepancy metric between noisy observations, Yobs, and simulated noisy observations, Ys , and 
ε is a sufficiently small discrepancy threshold. The most direct method to implement ABC is to use rejection sampling 
(Algorithm 3). Here, independent identically distributed samples of rate parameters are drawn from the prior, and the 

Algorithm 3 ABC rejection sampling to generate N approximated posteriors samples.
1: for i ∈ [1, 2, . . . , N] do
2: repeat
3: Sample the prior θ∗ ∼ p(θ);
4: Generate simulated data Ys ∼ s(· | θ∗);
5: until ρ(Yobs, Ys) ≤ ε
6: θ i ← θ∗ .
7: end for

sample is accepted if a resulting stochastic simulation of the model is within ε of the observations under the discrepancy 
metric. In practice, rejection sampling may not be computationally feasible due to the prohibitively high rejection rates when 
the data dimensionality is high. There are many techniques that can be applied to improve the computational efficiency of 
ABC methods that we do not discuss here due to the wealth of available literature [20,21,35,36,38,81]. Instead we specifically 
investigate recent developments in MLMC and multifidelity methods [46,62], as they provide a new avenue to explore 
computational improvements for ABC inference. While we focus on these methods as applied directly to ABC rejection 
sampling (Algorithm 3), we note that our work is also applicable to other schemes such as SMC [47,61].

2.3. Multilevel Monte Carlo and multifidelity methods for ABC inference

In this section, we describe two recent methods for acceleration of ABC inference that are foundational to the main 
contribution of this work. These methods are presented by Warne et al. [62] and Prescott and Baker [46], respectively. Both 
methods build upon the MLMC work of Giles [51] and Rhee and Glynn [82] for efficient computation of expectations with 
respect to a stochastic process [51,52]. We refer the reader to Warne et al. [22], Lester et al. [53], Schnoerr et al. [66], and 
Peherstorfer et al. [83], for accessible introductions to simulation and inference methods including MLMC and multifidelity 
methods.

2.3.1. Multilevel rejection sampling
For ABC inference, Warne et al. [22,62] consider the direct application of the telescoping summation (Equation (5)) to a 

sequence of L ABC rejection samplers (Algorithm 3). That is,

E [ f (θ L)] =E [ f (θ1)] +
L∑

E [ f (θ�) − f (θ�−1)] , (8)

�=2

5
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with θ� ∼ p(· | ρ(Yobs, Ys) ≤ ε�) for threshold ε� = ε0m−� for � = 1, . . . , L, where ε0 is a large discrepancy threshold leading 
to a high acceptance rate (typically close to the prior) and m > 1. The greatest challenge in application of MLMC for inference 
is the construction of a coupling to generate positively correlated sample pairs (θ �, θ�−1) without introducing additional 
bias that would violate the telescoping summation. For this Warne et al. [62] apply a novel construction using the marginal 
empirical distribution at level � and the inverse marginal distributions obtained from the bias corrections up to level � − 1. 
That is, given N� i.i.d. samples θ1

�, . . . , θ
N�

� , one generates

θ̃
i
�−1 = [ F̂ −1

�−1,1( F̄�,1(θ�,1)), . . . , F̂ −1
�−1,k( F̄�,k(θ�,k))], for i = 1, . . . , N�, (9)

where F̄�, j(·) is the marginal empirical distribution of the jth dimension of θ � , denoted by θ�, j , and F̂ −1
�−1, j(·) is an estimate 

of the marginal distribution inverse for the jth dimension of θ�−1. The result is a sampling procedure for (θ�, ̃θ�) with a 
positive correlation induced between pairs. Warne et al. [62] note that this approach only strictly satisfies the telescoping 
summation in each marginal rather than the full distribution of θ L . As a result, the sequence of discrepancies, ε1, . . . , εL , 
needs to be chosen so that the correlation structures between p(· | ρ(Yobs, Ys) ≤ ε�) and p(· | ρ(Yobs, Ys) ≤ ε�−1) are similar. 
This requires the bias correction terms in Equation (8) to be computed in order from � = 2 → L due to the dependence 
on the previous level for the estimation of the marginal distribution inverses at level � − 1 (Equation (9)). The complete 
process is given in Algorithm 4. Given an appropriate discrepancy sequence, the sample size sequence, N1, . . . , NL , can be 
optimised to achieve improved convergence rates in mean squared error (see Section 6.5.1 in Warne [84], Theorem 3.1 in 
Giles [51], and Section 3.2 in Lester et al. [53]). However, the target accuracy needs to be sufficiently small for this improved 
convergence rate to take effect due to an overhead computational cost in generating the trial simulations needed to optimise 
the sequence N1, . . . , NL .

Algorithm 4 Multilevel Monte Carlo for ABC rejection sampling (MLMC-ABC).
1: Initialise ε1, . . . , εL , N1, . . . , NL and prior p(θ).
2: for � = 1, . . . , L do
3: Sample θ1

� , . . . , θ N�

� ∼ p(· | ρ(Yobs, Ys) ≤ ε�) using ABC rejection sampling;

4: Set F̄�, j(s) ← ∑N�

i=1 1(−∞,s]
(
θ�, j

)
/N� for j = 1, . . . , k;

5: if � = 1 then
6: f̂� ← ∑N�

i=1 f (θ i
�)/N�;

7: else
8: for i = 1, . . . , N� do

9: Set θ̃ i
�−1 ←

[
F̂ −1

�−1,1

(
F̄ N�

�,1

(
θ i
�,1

))
, . . . , F̂ −1

�−1,k

(
F̄ N�

�,k

(
θ i
�,k

))]
;

10: end for
11: Set F̂�, j(s) ← F̂�−1, j(s) + ∑N�

i=1

[
1(−∞,s]

(
θ i
�, j

)
− 1(−∞,s]

(
θ̃ i
�−1, j

)]
/N� , j = 1, . . . , k;

12: Set f̂� ← f̂�−1 + ∑N�

i=1

[
f (θ i

�) − f (θ̃
i
�−1)

]
/N� .

13: end if
14: end for

2.3.2. Multifidelity rejection sampling
An alternative approach developed by Prescott and Baker [46] utilises the telescoping summation in a probabilistic man-

ner akin to the de-biasing approach of Rhee and Glynn [82]. Instead of considering a sequence of ABC samplers defined 
in terms of acceptance thresholds, they consider ABC rejection samples with different simulator fidelities. That is, a high 
fidelity simulator Ys ∼ s(· | θ) that is computationally expensive, such as the Gillespie direct method, and a computationally 
cheaper low fidelity simulator Ỹs ∼ s̃(· | θ), such as tau-leaping approximation with time step τ . The idea is to perform ABC 
rejection sampling with the low fidelity simulator with discrepancy ρ̃(Yobs, ̃Ys) and acceptance threshold ε̃ , and then per-
form a probabilistic bias correction that requires ABC rejection using a high fidelity simulation with discrepancy ρ(Yobs, Ys)

and acceptance threshold ε . The resulting estimator is given by

E [ f (θ)] ≈
∑N

i=1 w(θ i) f (θ i)∑N
i=1 w(θ i)

, (10)

where θ1, . . . , θ N are samples from the prior and the weight function is

w(θ) = 1(0,ε̃]
(
ρ̃(Yobs, Ỹs)

)
+ ξ

[
1(0,ε] (ρ(Yobs,Ys)) −1(0,ε̃]

(
ρ̃(Yobs, Ỹs)

)]
. (11)

Here, ξ is a random variable given by

ξ = 1(0,η(Ỹs)] (U )

˜ , (12)

η(Ys)

6
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where U ∼ U(0, 1) and η(Ỹs) is the probability of generating a high-fidelity simulation given a realisation from the low-
fidelity simulation. This so-called continuation probability can take many forms, however, the method originally proposed 
by Prescott and Baker [46] is

η(Ỹs) = η11(0,ε̃]
(
ρ̃(Yobs, Ỹs)

)
+ η21(ε̃,∞)

(
ρ̃(Yobs, Ỹs)

)
, (13)

where η1 and η2 are, respectively, the continuation probabilities when the low-fidelity simulation, Ỹs ∼ s̃(· | θ), is accepted 
and rejected. The sampler proceeds according to Algorithm 5.

Algorithm 5 Multifidelity ABC rejection sampling (MF-ABC).
1: Initialise η1, η2, N , ε, ̃ε , ρ(Yobs, ·), ρ̃(Yobs, ·) and prior p(θ);
2: for i = 1, 2, . . . , N do
3: Sample the prior θ i ∼ p(θ);
4: Simulate the low-fidelity model Ỹs ∼ s̃(· | θ i);

5: Set w̃ ← 1(0,ε̃]
(
ρ̃(Yobs, Ỹs)

)
and η ← η1 w̃ + η2(1 − w̃);

6: if U < η where U ∼ U(0, 1) then
7: Simulate the high-fidelity model Ys ∼ s(· | θ i);
8: Set wi ← w̃ + (1(0,ε] (ρ(Yobs,Ys)) − w̃)/η;
9: else

10: Set wi ← w̃;
11: end if
12: end for
13: Set f̂ ← ∑N

i=1 wi f (θ i)/ ∑N
i=1 wi .

Prescott and Baker [46] prove that when η1 > 0 and η2 > 0 the multifidelity estimator (Equation (10)) is asymptotically 
unbiased. The multifidelity ABC estimator may be viewed as a form of importance sampling and thereby has a bias of or-
der O(1/N) (Supplementary Material). Unlike standard rejection and importance samplers, the multifidelity weights can be 
negative. Despite this fact, the multifidelity ABC estimator is both asymptotically unbiased and consistent [63]. Under certain 
conditions η1, η2 may be optimised such that the multifidelity ABC rejection sampler (Algorithm 5) is more computation-
ally efficient than direct rejection sampling with the high fidelity simulator (Algorithm 3). This improvement represents a 
decrease in the average computational cost for a given target mean-square error, but it does not improve the convergence 
rate. However, the multifidelity approach will not incur a significant overhead for selecting the continuation probabilities 
since adaptive schemes can be applied [63] (Supplementary Material).

2.4. Multifidelity MLMC for ABC inference

The MLMC and multifidelity approaches to ABC inference, MLMC-ABC and MF-ABC, obtain computational improvements 
in distinct ways that are also complementary. MLMC-ABC (Algorithm 4) combines a sequence of ABC rejection samplers with 
different discrepancy thresholds [62] while the stochastic simulation scheme is fixed and must be unbiased. Conversely, MF-
ABC (Algorithm 5) combines two stochastic simulation schemes [46] with the other elements of the ABC sampler remaining 
largely unchanged. Computationally, MLMC-ABC empirically improves the convergence rate of the mean-square error as ε →
0 at the expense of a tuning step that incurs an additional cost [62]. This is consistent with theoretical and empirical results 
from other MLMC applications [57,60,61]. In addition, MF-ABC reduces the average simulation cost without improvements 
in the convergence rate [46,63]. Our novel contribution in this work is to show how these methods can be combined to 
exploit the computational advantages of both.

We now derive our new method, called multifidelity MLMC for ABC (MF-MLMC-ABC). Assume we have two sequences of 
L ABC acceptance thresholds, {ε�}�=L

�=1 and {ε̃�}�=L
�=1, with ε� > ε�+1 and ε̃� > ε̃�+1 for all � = 1, . . . , L − 1, and a sequence 

of L time-step lengths, {τ�}�=L
�=1. Note that there are no constraints on the relation between the two acceptance thresholds 

sequences, nor any requirement that the sequence of time-step lengths is strictly decreasing or even monotonic. Given a 
set of model parameters, θ ∈ �, let Ys ∼ s(· | θ) and Yτ

s ∼ sτ (· | θ) denote, respectively, exact stochastic simulation (i.e., 
using the Gillespie direct method [68]) and approximate stochastic simulation with time-step τ (i.e., using the tau-leaping 
method [74]). Finally, let ρ(Yobs, ·) and ρτ (Yobs, ·) be discrepancy metrics used to compare observed data Yobs with, respec-
tively, exact simulation output, Ys , or approximate simulation output, Yτ

s .
Given the above notation, for any � = 1, . . . , L we can apply MF-ABC sampling using weights,

wτ� (θ�) = 1(0,ε̃�]
(
ρτ�(Yobs,Yτ�

s )
) +

1
(0,ητ� (Y

τ�
s )] (U )

ητ�(Yτ�
s )

[
1(0,ε�] (ρ(Yobs,Ys)) −1(0,ε̃�]

(
ρτ�(Yobs,Yτ�

s )
)]

, (14)

with continuation probability function

ητ�(Yτ�
s ) = η�,11(0,ε̃ ]

(
ρτ�(Yobs,Yτ�

s )
) + η�,21(ε̃ ,∞)

(
ρτ�(Yobs,Yτ�

s )
)
, (15)
� �

7
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Algorithm 6 Multifidelity multilevel Monte Carlo for ABC rejection sampling (MF-MLMC-ABC).

1: Initialise {ε�}�=L
�=1, {ε̃�}�=L

�=1, {τ�}�=L
�=1, {N�}�=L

�=1, {(η�,1, η�,2)}�=L
�=1, ρ(Yobs, ·), ρτ� (Yobs, ·) and prior p(θ);

2: for � = 1, . . . , L do
3: for i = 1, 2, . . . , N� do
4: Sample the prior θ i

� ∼ p(θ);
5: Simulate the low-fidelity model with τ = τ� , Yτ�

s ∼ sτ� (· | θ i
�);

6: Set w̃ ← 1(0,ε̃�]
(
ρτ� (Yobs,Yτ�

s )
)

and ητ� ← η�,1 w̃ + η�,2(1 − w̃);
7: if U < ητ� where U ∼ U(0, 1) then
8: Simulate the high-fidelity model Ys ∼ s(· | θ i

�);
9: Set wi

� ← w̃ + (1(0,ε] (ρ(Yobs,Ys)) − w̃)/ητ� ;
10: else
11: Set wi

� ← w̃;
12: end if
13: end for
14: Set W� = 1/ ∑N�

i=1 wi
�;

15: Set F̄�, j(s) ← W�

∑N�

i=1 wi
�1(−∞,s]

(
θ�, j

)
for j = 1, . . . , k;

16: if � = 1 then
17: f̂� ← W�

∑N�

i=1 wi
� f (θ i

�);
18: else
19: for i = 1, . . . , N� do

20: Set θ̃ i
�−1 ←

[
F̂ −1

�−1,1

(
F̄ N�

�,1

(
θ i
�,1

))
, . . . , F̂ −1

�−1,k

(
F̄ N�

�,k

(
θ i
�,k

))]
;

21: end for
22: Set F̂�, j(s) ← F̂�−1, j(s) + W�

∑N�

i=1 wi
�

[
1(−∞,s]

(
θ i
�, j

)
−1(−∞,s]

(
θ̃ i
�−1, j

)]
, j = 1, . . . , k;

23: Set f̂� ← f̂�−1 + W�

∑N�

i=1 wi
�

[
f (θ i

�) − f (θ̃
i
�−1)

]
.

24: end if
25: end for

for constants η�,1 > 0, η�,2 > 0 for each � = 1, . . . , L and U ∼ U(0, 1). Based on the results of Prescott and Baker [46], 
an expectation estimated this way would be aysmptotically unbiased with respect to the ABC posterior under the exact 
stochastic simulation and discrepancy measure, that is, θ � ∼ p(· | ρ(Yobs, Ys) ≤ ε�). This provides a connection to the MLMC-
ABC telescoping summation in Equation (8). Therefore, we can apply the MF-ABC estimator (Equation (10)) using weights 
defined by Equation (14) to each of the L terms in the MLMC-ABC telescoping summation (Equation (4)) and thereby arrive 
at the MF-MLMC-ABC estimator,

E [ f (θ L)] ≈ f̂ =
L∑

�=1

N�∑
i=1

wτ� (θ i
�)g�(θ

i
�)∑N�

j=1 wτ� (θ
j
�)

, (16)

where

g�(θ
i
�) =

{
f (θ i

�) if � = 1

f (θ i
�) − f (θ̃

i
�−1) if � > 1

, (17)

and θ̃
i
�−1 is constructed from θ i

� and estimated marginal distribution functions obtained from the previous � − 1 terms, 
as given in Equation (9), to implement an approximate coupling between levels [22,62]. Due to the properties of MF-
ABC, Equation (16) is an asymptotically unbiased estimator of Equation (8) [46] and therefore an asymptotically unbiased 
estimator of E [ f (θ L)] up to the approximate coupling scheme [62].

We therefore arrive at the MF-MLMC-ABC method presented in Algorithm 6. Note that the proposed approach, just as 
with MLMC-ABC and MF-ABC, requires a number of algorithmic hyperparameters to be selected appropriately to ensure 
efficient sampling. In the next section we discuss theoretical results that guide how these parameters should be selected.

2.5. Optimal algorithm configuration

There are several important algorithmic hyperparameters that must be appropriately chosen to practically apply the MF-
MLMC-ABC method. Each of these has various influences on the accuracy and performance of the MF-MLMC-ABC method. 
In this section, we will step through each of these algorithmic hyperparameters and provide theoretical results to optimally 
configure the method. The algorithmic hyperparameters that require optimisation are the number of levels, L, the form 
of the sequences {ε�}�=L

�=1 and {τ�}�=L
�=1, the sequence of samples to draw from each level, {N�}�=L

�=1, and the sequence of 
continuation probabilities, {(η�,1, η�,2)}�=L

�=1. Of these, L and {τ�}�=L
�=1 need to be selected heuristically, however, for any given 

L and {τ�}�=L
�=1, the sequences {N�}�=L

�=1 and {(η�,1, η�,2)}�=L
�=1 may be optimised.

For a given level � and assuming τ� is selected, the optimal η�,1 and η�,2 can be determined through optimising the 
limiting efficiency as the number of samples N� → ∞. Prescott and Baker [46] show that this corresponds to minimising 
the function
8
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φ(η�,1, η�,2; g�) = E
[

wτ� (θ�)
2(g�(θ�) −E [g�(θ�)])2

]
E [C�(θ�)] , (18)

where C�(θ�) is the cost of computing the weight wτ� (θ�) (Equation (14)). If the acceptance state of an approximate 
simulation is interpreted as a classifier for the predicted acceptance state for an exact simulation, and the true positive 
rate exceeds the false positive rate, then Equation (18) can be minimised for (η�,1, η�,2) ∈ (0, 1]2 (See Lemmas 4.2 and 4.3 
in Prescott and Baker [46]). The optimal continuation probabilities are given by (See Corollary 4.4 in Prescott and Baker [46])

(η∗
�,1, η

∗
�,2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(√
R�

p

R�
0

,

√
R�

n

R�
0

)
, if max {R�

p, R�
n} ≤ R�

0,(
1, η̄�,2

)
, if max {R�

p, R�
n} > R�

0 and φ(1, η̄�,2) ≤ φ(η̄�,1,1),(
η̄�,1,1

)
, otherwise,

(19)

where

R�
p = p�

f pE [cτ� (θ�)]

c�
p

, R�
n = p�

f nE [cτ� (θ�)]

c�
n

, R�
0 = p�

tp − p�
f p,

η̄�,1 = min

⎧⎨
⎩1,

√√√√ R�
p + p�

f pc�
n/c�

p

R�
0 + p�

f n

⎫⎬
⎭ , η̄�,2 = min

⎧⎨
⎩1,

√√√√ R�
n + p�

f nc�
p/c�

n

R�
0 + p�

f p

⎫⎬
⎭ ,

(20)

and

p�
tp = E

[
1(0,ε�] (ρ(Yobs,Ys))1(0,ε̃�]

(
ρτ�(Yobs,Yτ�

s )
)
(g�(θ�) −E [g�(θ�)])2

]
,

p�
f p = E

[
1(ε�,∞] (ρ(Yobs,Ys))1(0,ε̃�]

(
ρτ�(Yobs,Yτ�

s )
)
(g�(θ�) −E [g�(θ�)])2

]
,

p�
f n = E

[
1(0,ε�] (ρ(Yobs,Ys))1(ε̃�,∞]

(
ρτ�(Yobs,Yτ�

s )
)
(g�(θ�) −E [g�(θ�)])2

]
,

c�
p = E

[
c(θ�) | ρτ�(Yobs,Yτ�

s ) ≤ ε̃�

]
,

c�
n = E

[
c(θ�) | ρτ�(Yobs,Yτ�

s ) > ε̃�

]
.

(21)

In Equations (20) and (21), c(θ�) and cτ� (θ�) denote, respectively, the cost of generating an exact realisation, Ys ∼ s(· | θ�), 
and an approximate realisation, Yτ�

s ∼ sτ� (· | θ�).
To optimise the sequence of samples {N�}�=L

�=1, we aim to minimise the total expected computational cost of computing 
the MF-MLMC-ABC estimator, that is, E 

[
C( f̂ )

]
= ∑L

�=1 N�E [C�(θ�)], subject to the constraint Var
[

f̂
]

∝ h2 where h2 is the 
target variance. Using a Lagrange multiplier, it can be shown (See Giles [51], Lester et al. [53], and Warne et al. [62]) that 
the following scaling is optimal,

N� ∝ h−2
√

v�

c�

L∑
m=1

√
vmcm, for � = 1,2, . . . , L, (22)

where c� =E [C�(θ�)] and v� =E 
[

wτ� (θ�)
2(g�(θ�) −E [g�(θ�)])2

]
/E [wτ� (θ�)]2.

Relative to ABC rejection sampling, the MF-MLMC-ABC method is asymptotically unbiased, with the bias at level � being 
of the order importance sampling O(1/N�) (Supplementary Material). The effect of this bias to be considered along with 
the optimal sample size scaling in Equation (23), especially for the terminal level L. That is, we require the bias due to 
MF-ABC sampling to be small compared with the bias incurred from the ABC-based approximations, which are O(ε). This 
is difficult to test in practice, however, it is a common feature of any ABC method based on importance sampling.

2.6. Practical algorithm tuning

A practical choice for the selection of most components of MF-MLMC-ABC is immediately available from the target ABC-
based inference problem, for example, the exact stochastic simulation process Ys ∼ s(· | θ), the prior probability density, 
p(θ), the discrepancy metric ρ(Yobs, ·), and the target acceptance threshold εL . Other choices are easily motivated. The 
largest acceptance threshold, ε1, can be chosen so that p(θ | ρ(Yobs, Ys) ≤ ε1) ≈ p(θ). The approximate stochastic simulation 
scheme, Yτ

s ∼ sτ (· | θ), could be chosen from a range of candidates, but a first-order method such as tau-leaping will be an 
appropriate default choice in many cases. Given a tau-leaping scheme for the approximate model, it will often be appropriate 
to take ρτ (Yobs, ·) = ρ(Yobs, ·), and therefore ε̃� = ε� for all � = 1, . . . , L is applicable. Of course, there is freedom and 
flexibility in all of these choices, and the discussion section highlights some potentially useful alternative strategies.

Next the number of levels, L, needs to be determined. Unfortunately, there is no general theory for this choice. However 
one common approach from the MLMC literature is to consider a geometric sequence ε� = ε1m−�+1 then set L = 1 −
9
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logm(εL/ε1). Some heuristics do exist to determine the appropriate scale factor m > 1. For MLMC with SDEs Giles [51]
demonstrated m = 4 is optimal, however, due to the approximate coupling scheme for MLMC-ABC, Warne et al., [22,62]
propose m ∈ [1.5, 2.5] as a practical choice for inference.

Choice of the sequence of time-steps, {τ�}�=L
�=1, can be guided by Equations (19)–(21). Firstly, we wish τ� to be small 

enough to exhibit low false positive and false negative rates; this will result in smaller optimal continuation probabilities 
(Equation (20)) and reduce the number of times the high-fidelity model is simulated [46]. However, the speed-up factor 
for low-fidelity simulations over high-fidelity simulations needs to be sufficiently high, otherwise there is not enough of 
a computational benefit [63]. Therefore, τ� cannot be arbitrary small. To tune τ� , some experimentation is required to 
compare the differences computation time and the acceptance state between pairs of exact and approximate simulations. 
Fortunately, it is possible to identify poor choices of τ� , since the adaptive tuning scheme for the optimal continuation 
probabilities will be unable to improve upon standard ABC rejection sampling. It is also important to note that {τ�}�=L

�=1 need 
not be a strictly decreasing or even monotonic sequence, and we demonstrate in the results section that τ1 = τ2 = · · · = τL

works quite well for many applications. Furthermore, introducing a coupling scheme between the exact and approximate 
simulations [46,52,53] can reduce mis-classification rates of larger values of τ� and lead to improved performance.

In practice, Equation (19) is solved for optimal continuation probabilities through the generation of initial trial sam-
ples [46]. In this work, we extend this through adaptive updates to (η�,1, η�,2) while generating samples at level �. For 
the trial samples, we generate M samples using Algorithm 5 with η�,1 = η�,2 = 1, then initial estimates of the expecta-
tions in Equation (20) are produced through direct Monte Carlo estimates. Next, gradient descent is applied to iteratively 
update η�,1 and η�,2 toward the optimum in Equation (19) while also refining the estimates in Equations (20). While it 
is possible to iteratively refine the solution to Equation (19) directly as the sampling proceeds [46], we find that this is 
extremely sensitive to the initial estimates. Therefore we utilise our adaptive gradient descent MF-ABC sampler based on 
recent developments [63] as a robust alternative to Algorithm 5 (Supplementary Material).

Finally, to apply MF-MLMC-ABC the sequence of sample numbers, {N�}�=L
�=1, are needed. Fortunately, we can rewrite 

Equation (22) as

N� ∝ 1

h−2

√
φ(η�,1, η�,2; g�)

E [C�(θ�)]E [wτ� (θ�)]

L∑
m=1

√
φ(ηm,1, ηm,2; gm)

E [wτm (θm)]
, (23)

to highlight that the optimal sequence of sample numbers, {N�}�=L
�=1, is dependent on the optimal continuation probabilities 

obtained using the adaptive gradient descent MF-ABC scheme at each level. Therefore, we can estimate the terms required 
for optimal {N�}�=L

�=1 directly from the same trial samples used to estimate optimal {(η�,1, η�,2)}�=L
�=1.

2.7. Summary

The MF-ABC and MLMC-ABC methods exploit the multilevel telescoping summation, and properties of approximate 
stochastic simulation and ABC sampling in distinct and complementary ways. In the first instance, MF-ABC can improve 
on the expected cost of stochastic simulation in ABC rejection sampling using the randomized bias correction term [46,82]. 
MLMC-ABC assumes exact stochastic simulation for ABC rejection sampling, but applies MLMC techniques to a sequence 
of correlated samplers with discrepancy thresholds ε1 > ε2 > · · · > εL with the effect of improving the convergence 
rate [61,62]. We develop a new method, MF-MLMC-ABC, that results from the application of MF-ABC sampling for each 
of the terms in the MLMC-ABC telescoping summation. In the next section we demonstrate how to tune these methods 
practically and show the computational benefits of both can be exploited to achieve improvements of two orders of magni-
tude.

3. Results

Using a variety of biologically relevant stochastic biochemical reaction network models, we demonstrate the substantial 
computational improvements using our new MF-MLMC-ABC method (Algorithm 6). First we consider the properties of the 
MLMC-ABC (Algorithm 4) and MF-ABC (Algorithm 5) methods for a fundamental biochemical building block, the Michaelis–
Menten model, to show practically how to tune these methods. Then we apply these guidelines to tune our new MF-MLMC-
ABC method for the repressilator gene regulatory network to show the performance benefits over MF-ABC and MLMC-ABC. 
Finally, we perform a realistic test on the two-step MAPK cascade network that is of fundamental importance in cell biology. 
For two computationally challenging networks we show that MF-MLMC-ABC effectively combines the advantages of both 
MF-ABC and MLMC-ABC to accelerate ABC rejection sampling by two orders of magnitude.

In the sections that follow, we focus on the performance improvements of our new approach for the purpose of estimat-
ing posterior means of unknown parameters. However, it is important to note that our approach, arising from Equation (16), 
handles expectations of an arbitrary function of the unknown parameters, f (θ). This could include posterior probabilities or 
densities, or even central moments of the posterior predictive distribution, that is the mean and variance of the biochemical 
network state XT given θ . We demonstrate the use of MF-MLMC-ABC for estimation of marginal densities for the two-stage 
MAPK example.
10
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Fig. 1. Example realisation of the Michaelis–Menten model along with noisy observations of the product molecules yobs(t) ∼ N (Pt , σ 2) (error bars indicate 
yobs(t) ± σ ). Here, the initial condition is E0 = S0 = 1000, the true rate parameters are k1 = 0.001, k2 = 0.005 and k3 = 0.01, and observations are taken 
at ti = 20i, for i = 1, 2, 3, 4 with standard deviation σ = 10.

3.1. Initial explorations of MF-ABC and MLMC-ABC: Michaelis–Menten kinetics

Using a stochastic network of Michaelis–Menten enzyme kinetics [85,86], we demonstrate the essential requirements and 
computational benefits of the MF-ABC and MLMC-ABC methods in order to inform the configuration of MF-MLMC-ABC for 
more challenging networks. The Michaelis–Menten enzyme kinetics model describes the catalytic conversion of a substrate, 
S , into a product, P , via an enzymatic reaction involving enzyme, E ,

E + S
k1→ [E S], [E S] k2→ E + S, [E S] k3→ E + P , (24)

with kinetic rate parameters, k1, k2, and k3. Biologically, this network is of interest since many intracellular processes are 
built from Michaelis–Menten sub-components. Computationally, the Michaelis–Menten model is a minimal example of a 
network without a closed-form solution to the CME, however, with only three rate parameters and four chemical species, 
ABC inference is feasible even with rejection sampling [22].

For our simulated data we consider the realistic scenario where only the product molecules are directly observed (typi-
cally via fluorescent tagging of proteins [87–89]), that is,

yobs(t) ∼ N (Pt,σ
2), (25)

where σ is the standard deviation of the additive Gaussian observation noise. In real applications, especially for low copy 
numbers, it may be more appropriate to consider multinomial noise or multiplicative Gaussian noise [90,91], however, 
for the purposes of the numerical experiments we present here, additive Gaussian noise is perfectly reasonable. Fig. 1
shows an example realisation of the Michaelis–Menten model with simulated observations indicated at discrete times, 
t1 = 20, t2 = 40, t3 = 60, and t4 = 80.

Using the Michaelis–Menten model and the noisy partial observations, we explore the effects of varying the parameters L
and τ on the performance of MLMC-ABC and MF-ABC, respectively, with a tau-leaping method assumed for the approximate 
simulation scheme. To this end, we consider the ABC inference problem,

E [k3 | Yobs] ≈
∫
R3

k3 p(θ | ρ(Yobs,Ys) ≤ ε)dθ, (26)

where θ = [k1, k2, k3] is the vector of unknown rate parameters, Yobs = [yobs(t1), . . . , yobs(t4)] is noisy observations of 
product copy numbers at discrete times t1, . . . , t4, Ys ∼ s(· | θ) is simulated data of the Michaelis–Menten model using the 
Gillespie direct method and simulating the observation process (Equation (25)), ε is the discrepancy threshold, and the 
discrepancy metric is ρ(Yobs, Ys) = ‖Yobs − Ys‖2 where ‖·, ‖2 is the Euclidean norm. Independent uniform priors are used 
with k1 ∼ U(0, 0.003), k2 ∼ U(0, 0.0015), and k3 ∼ U(0, 0.05).

We first explore MLMC-ABC (Algorithm 4) in terms of the effect of the number of levels, L, using data generated with 
Equation (25) with σ = 2 at discrete times t1 = 20, t2 = 40, t3 = 60, and t4 = 80 using a single realisation given initial 
conditions E0 = S0 = 1000 and [E S]0 = P0 = 0, and rate parameters k1 = 0.001, k2 = 0.005 and k3 = 0.01. We use ε1 = 1600
and apply MLMC-ABC for different numbers of levels L ∈ [2, 3, . . . , 9] and different target discrepancy thresholds εL = ε ∈
[200, 300, . . . , 600]. Optimal sample numbers {N�}�=L

�=1 are obtained using a Lagrange multiplier approach [51,53,62] and 
rescaled so that NL = 16. All stochastic simulations, Ys ∼ s(· | θ), are exact using the Gillespie direct method (Algorithm 1). 
Fig. 2 shows how the trade-off between computational cost and estimator variance is affected by the number of levels, L. 
The trends in terms of L (Fig. 2(A)) are not very meaningful because for a fixed L the scale factor m will be different for each 
11
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Fig. 2. (A) The effect of the number of levels, L, in MLMC-ABC on the sampling efficiency (as determined by the product of computational cost and the 
estimator variance). (B) Equivalent plot in terms of m = (ε1/εL)

1/(L−1) to highlight that this product is minimised for the scaling m ∈ [1.5, 2] (black dashed 
lines) regardless of the target epsilon. Target discrepancy thresholds are indicated by dashed lines and in all cases ε1 = 1600. (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. The relationship between the approximate stochastic simulation time-step, τ and: (A) the cost of generating N = 10000 weighted samples; (B) 
the continuation probability when an approximate stochastic simulation is accepted; and (C) the continuation probability when an approximate stochastic 
simulation is rejected. Coloured lines indicate the effect of τ for different discrepancy thresholds ε . (For interpretation of the colours in the figure(s), the 
reader is referred to the web version of this article.)

target threshold. However, when the same data are presented in terms of the scale factor, m (Fig. 2(B)), the optimal choice 
is consistently contained within m ∈ [1.5, 2]. This result aligns closely with the previous work on MLMC-ABC [62]. Therefore, 
we conclude that a good heuristic for a given ε1 and εL is to choose m within this interval such that L = 1 − logm(εL/ε1) is 
a positive integer.

Next we look at the more nuanced problem of tuning the tau-leap time-step, τ , in the context of MF-ABC (Algorithm 5) 
for performance. Using the same data configuration and ABC problem definition as for MLMC-ABC we apply MF-ABC for 
different time-steps τ ∈ [0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28] and for the same set of target discrepancy 
thresholds as for MLMC-ABC. We also take ε̃ = ε , and ρτ (Yobs, Yτ

s ) = ‖Yobs − Yτ
s ‖2 with Yτ

s ∼ sτ (· | θ) is the approximate 
stochastic simulation process using the tau-leaping method (Algorithm 2).

Fig. 3 shows the effect of varying τ on the computational cost of generating the N weighted samples, and the optimal 
continuation probabilities η1 and η2, as determined by the adaptive update scheme. Note that some choices of τ result in 
12
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Fig. 4. Example realisation of the repressilator gene regulatory network model along with noisy observations of the three protein molecules, yobs(t) ∼
N ([P1,t , P2,t , P3,t ]T, σ 2I) (error bars indicate yobs(t) ± σ ). Here, the initial condition is M1,0 = M2,0 = M3,0 = 0, P1,0 = 40, P2,0 = 20, P3,0 = 60, the true 
rate parameters are α0 = 1, α = 1000, K = 20, n = 2, β = 5 and γ = 1, and observations are taken at ti = i, for i = 1, 2, . . .10 with standard deviation 
σ = 10.

very small values for both η1 and η2 (Fig. 3(B)–(C)). However, this does not translate into a computational improvement, 
since the total compute time is always larger that the worst case with η1 = η2 = 1 (Fig. 3(A)). We therefore conclude that 
there is no computational advantage in using MF-ABC for the Michaelis–Menten model as specified here. Effectively, the 
tau-leaping method does not provide enough of a computational benefit over the Gillespie direct method for the Michaelis–
Menten model with the given initial conditions.

A key message from this section is that before employing MLMC-ABC or MF-ABC, and by extension our new method 
MF-MLMC-ABC, some initial exploration should be performed. While MF-ABC provides no benefit for the Michaelis–Menten 
model, this is largely due to the simplicity of the network. In more complex models that we consider in the next two 
sections, MF-ABC provides a substantial improvement leading to high efficiency with the MF-MLMC-ABC method.

3.2. Tuning and performance of MF-MLMC-ABC: Repressilator gene regulatory network

We now demonstrate the computational benefits of MF-MLMC-ABC using a stochastic gene regulatory network called the 
repressilator [92]. The repressilator describes the expression levels of three genes, G1, G2, and G3, in which the expression 
of Gi inhibits the expression of G(i mod 3)+1, forming a cycle that results in stochastic oscillations. Each gene, Gi , consists 
of two reactions that describe gene expression, through the transcription of mRNA, Mi , and translation into protein, Pi , and 
two reactions that describe the degradation of mRNA and protein molecules. For the ith gene we have

Gi

α0+αK n/(K n+Pn
j )−−−−−−−−−−−→ Gi + Mi, Mi

β→ Mi + Pi, Pi
β→ ∅, and Mi

γ→ ∅, (27)

where j = (i + 1 mod 3) + 1, α0 ≥ 0 is the leakage transcription rate (the transcription rate of a maximally inhibited gene), 
α + α0 > 0 is the free transcription rate (uninhibited transcription rate), n ≥ 0 is the Hill coefficient that describes the 
strength of the repressive effect of the inhibitor protein P j , K is the number of P j inhibitor proteins required to reduce the 
transcription rate of Gi by 50% (excluding leakage), β > 0 is the protein translation and degradation rate, and γ > 0 is the 
mRNA degradation rate.

We consider noisy observations of the protein copy numbers since these will be the only observables via fluorescent 
markers. This yields the observation process

yobs(t) ∼ N ([P1,t, P2,t, P3,t]T,σ 2I), (28)

where I the 3 × 3 identity matrix. Just as with the Michaelis–Menten example, alternate noise models could be utilised. 
Discrete observations are taken at regular one time unit intervals, ti = i, for i = 0, 1, . . . , 10. Fig. 4 shows an example 
realisation of the repressilator model along with discrete observations of the protein molecules.

This model is a common choice to benchmark the performance of likelihood-free inference methods since the oscillatory 
behaviour renders the acceptance probability to be very low [25,46,93]. For our MF-MLMC-ABC method, the repressilator is 
particularly interesting due to the possibility that coupled pairs of exact simulations and approximate simulations will go 
out of phase with each other. This means the time-step sequence {τ�}�=L

�=1 must be carefully chosen.
In the target ABC inference problem we consider assumes only the parameters of Hill functions to be unknown and 

evaluates

E [K | Yobs] ≈
∫

2

Kp(θ | ρ(Yobs,Ys) ≤ ε)dθ, (29)
R
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Fig. 5. The relationship between the approximate stochastic simulation time-step, τ , and: (A) the cost of generating N = 10000 weighted samples; (B) 
the continuation probability when an approximate stochastic simulation is accepted; and (C) the continuation probability when an approximate stochastic 
simulation is rejected. Solid lines indicate the effect of τ for different discrepancy thresholds ε and the dashed black lines indicate the range of values for 
τ that demonstrate performance improvement. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

where θ = [K , n] is the vector of unknown Hill function parameters, Yobs = [yobs(t0), . . . , yobs(t10)] are noisy observations of 
protein copy numbers at discrete times t1, . . . , t10 (Equation (28)), Ys ∼ s(· | θ) is simulated data of the repressilator model 
generated using the Gillespie direct method and the observation process (Equation (28)), ε is the discrepancy threshold, 
and the discrepancy metric is ρ(Yobs, Ys) = ‖Yobs − Ys‖2 where ‖·, ‖2 is the Euclidean norm. Independent uniform priors are 
used with K ∼ U(10, 30), n ∼ U(1, 4). We treat the rate parameters as known with α0 = 1, α = 1000, β = 5 and γ = 1.

To apply MF-MLMC-ABC we require an appropriate sequence of time-steps {τ�}�=L
�=1. To tune this sequence, we draw 

a small number, N = 10000, of MF-ABC weighted samples using the adaptive optimisation scheme for continuation 
probabilities (Supplementary Material) for a range of discrepancy thresholds ε ∈ [200, 300, . . . , 600] and time-steps τ ∈
[0.005, 0.01, 0.02, . . . , 0.64]. We also take ε̃ = ε and ρτ (Yobs, Yτ

s ) = ‖Yobs − Yτ
s ‖2, with Yτ

s ∼ sτ (· | θ) the approximate 
stochastic simulation process using the tau-leaping method (Algorithm 2). Fig. 5 show the relationship between τ , the 
computational cost, and continuation probabilities for each of the target discrepancy thresholds. If these discrepancies rep-
resented the MF-MLMC-ABC discrepancy sequence ε1 = 600, . . . , εL = 300 with L = 4, then Fig. 5(A) can be used to identify 
the optimal sequence for each τ� by finding the value of τ� with the lowest expected cost C( f̂ ). This suggests a sequence 
of τ1 = 0.08, τ2 = 0.04, τ3 = 0.01, τ4 = 0.02. If we restrict our choice to a single time-step value to apply to all levels, then 
τ1 = τ2 = · · ·τL = 0.02 is the best overall as this value for τ� results in the lowest total cost for N samples from each level.

Using the above heuristics we arrive at the choice of L = 5 and τ = 0.04. We apply our new MF-MLMC-ABC method 
(Algorithm 6) to the ABC inference problem in Equation (29) and compare with MLMC-ABC (Algorithm 4), MF-ABC (Algo-
rithm 5), and ABC rejection sampling (Algorithm 3) for different values for the target discrepancy ε ∈ [350, 500], and in all 
cases ε1 = 1600. For each target, we perform optimal tuning steps for MF-MLMC-ABC, MLMC-ABC and MF-ABC to adapt 
the continuation probabilities {(η�,1, η�,1)}�=L

�=1 and sample sizes {N�}�=L
�=1. We repeat this for different target variances, h2, 

then estimate the variance, Var
[

f̂
]

, and the computational cost, C( f̂ ), to obtain an estimate of the convergence rate, γ , 

by least-squares fitting Var
[

f̂
]

∝ C( f̂ )−γ to align with theory from the MLMC literature [50,51]. Fig. 6 demonstrates the 
substantial computational advantage of MF-MLMC-ABC.

While MF-ABC is consistently computationally cheaper than ABC rejection sampling, the convergence rate is γ ≈ 1 which 
is equivalent to the limiting behaviour of ABC rejection and the theoretical rate under the central limit theorem. MLMC-ABC 
achieves a higher convergence rate of around γ ≈ 1.5. However, the computational benefit is not realised until the target 
variances are small due to the overhead of tuning for {N�}�=L

�=1 along with the exact stochastic simulations performed at 
every level. MF-MLMC-ABC out-performs the other methods in every target discrepancy and target variance, and succeeds 
14
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Fig. 6. Comparison of convergence rates for MF-MLMC-ABC (yellow triangles) with MF-ABC (blue crosses), MLMC-ABC (red squares), and ABC rejection 
sampling (black diamonds) using the repressilator model with thresholds: (A) ε = 500; and (B) ε = 350. Rates are estimated by fitting Var

[
f̂
]

∝ C( f̂ )−γ

to benchmark data using least squares.

in both improving the convergence rate and substantially reducing the overall computational cost, including the tuning 
steps. The convergence rate is improved in a similar way to MLMC-ABC with γ ≈ 1.5, however, the overall computational 
reduction in MF-MLMC-ABC compared with MLMC-ABC is larger than the reduction in MF-ABC vs ABC rejection. This is 
largely due to the fact that MF-ABC is most effective for larger discrepancies, as noted by the tendency for optimal con-
tinuation probabilities to be smaller as the discrepancy threshold increases (Fig. 5(B)–(C)). Furthermore, MLMC will utilise 
variance reduction via the coupling in the telescoping summation to allocate fewer samples for the smaller discrepancies. 
As a result, the earlier levels benefit from both the higher acceptance rates that come with large discrepancy thresholds, and 
smaller continuation probabilities so exact stochastic simulations are rarely executed. The effect extends to the optimisation 
of {N�}�=L

�=1 through Equation (23). This results in a substantial reduction in the usual overheads associated with MLMC-ABC 
and computational benefit is realised for much smaller target variances. Consistently, for equivalent computational cost the 
MF-MLMC-ABC is between one and two orders of magnitude lower in terms of variance and the improvement increases 
for larger computation times due to the convergence rate. This example demonstrates practically how MF-MLMC-ABC may 
be tuned without substantial overhead to provide a very high-performance inference method. We also explore the effect of 
different choices of L and τ to demonstrate the efficiency of our heuristics (Supplementary Material).

One final aspect of the MF-MLMC-ABC approach that is important to consider is that of the additional bias that can be 
incurred from either selecting a poor choice of L (that is, m is too large), or from the bias in the MF-ABC scheme for small 
N� . To explore this we compare the expectations of the parameter K across algorithms. Fig. 7, demonstrates that this bias, 
as expected, decays with computational effort. However, it is also important to note that the magnitude of the bias is small 
compared with that of the ABC approximation as additional experimentation shows that a smaller discrepancy of ε < 200
leads to E [K | Yobs] ≈ 18.

3.3. A challenging problem: Two-step MAPK cascade reaction

The last example we consider is a challenging biological network involving a two-step Mitogen Activated Protein Ki-
nase (MAPK) enzymatic cascade [64]. Such cascade reactions are essential components of cell signalling processes, such 
as Epidermal Growth Factor Receptor (EGFR) signalling, that regulates cell growth, death, proliferation, and differentiation 
15
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Fig. 7. Comparison of expectations for MF-MLMC-ABC (yellow and red triangles) with MF-ABC (blue crosses), and ABC rejection sampling (black diamonds) 
using the repressilator model with thresholds: (A) ε = 500; and (B) ε = 350.

in mammalian cells [65,94]. This two-step MAPK cascade model involves four coupled Michaelis–Menten components that 
govern the phosphorylation and dephosphorylation of two proteins X and Y ,

X + E
k1→ [X E], [X E] k2→ X + E, [X E] k3→ X∗ + E,

X∗ + P1
k4→ [X∗ P1], [X∗ P1] k5→ X∗ + P1, [X∗ P1] k6→ X + P1,

X∗ + Y
k7→ [X∗Y ], [X∗Y ] k8→ X∗ + Y , [X∗Y ] k9→ X∗ + Y ∗,

Y ∗ + P2
k10→ [Y ∗ P2], [Y ∗ P2] k11→ Y ∗ + P2, [Y ∗ P2] k12→ Y + P2,

(30)

where k1, k2, . . . , k12 are kinetic rate parameters, X∗, Y ∗ are the activated (phosphorylated) proteins, E is the enzyme in-
volved in the activation of the X protein, and P1, P2 are phosphatase molecules that dephosphorylate X∗, Y ∗ . Finally note 
the two-step process where the activated X∗ protein acts as an enzyme in the activation of Y .

In this case, we assume only activated proteins can be detected, therefore we consider the observation process

yobs(t) ∼ N ([X∗
t , Y ∗

t ]T,σ 2I), (31)

where I the 2 × 2 identity matrix. Discrete observations are taken at regular four time unit intervals. ti = 4i, for 
i = 0, 1, . . . 50. Fig. 8(A) shows an example realisation of the two-step MAPK cascade model along with discrete observations 
of the activated proteins. Figs. 8(B)–(D) provide additional detail and highlight the complex dynamics of the unobserved 
chemical species. Given the very limited data in this realistic scenario, we do not have practical identifiability for all rate 
parameters. Based on the network structure, we only expect parameters k3, k6, k9, and k12 to be identifiable as these rates 
correspond to reactions that change the copy numbers of the observed variables.

The target ABC inference problem we consider is to estimate the reverse rate parameter of the dephosphorylation reac-
tion for the deactivation of Y ∗ and the marginal posterior distributions for the identifiable rate parameters

E [k11 | Yobs] ≈
∫
R8

k11 p(θ | ρ(Yobs,Ys) ≤ ε)dθ,

P (ki < si | Yobs) ≈
∫

8

1(−∞,si] (ki) p(θ | ρ(Yobs,Ys) ≤ ε)dθ, i = 3,6,9,12
(32)
R

16



D.J. Warne, T.P. Prescott, R.E. Baker et al. Journal of Computational Physics 469 (2022) 111543
Fig. 8. Example realisation of the two-step MAPK cascade reaction network model along with noisy observations of the two phosphorylated protein 
molecules, yobs(t) ∼ N ([X∗

t , Y ∗
t ]T, σ 2I) (error bars indicate yobs(t) ± σ ). Here, the initial condition is E0 = 94, X0 = 757, Y = 567, P1 = P2 = 32, and 

X∗ = Y ∗ = E X = X∗ P1 = Y X∗ = Y ∗ P2, and the true rate parameters are k1 = 0.001, k2 = k1/120, k3 = 0.18, k4 = 0.001, k5 = k4/22, k6 = 0.3, k7 = 0.0001, 
k8 = k7/110, k9 = 0.2, k10 = 0.001, k11 = k10/22, and k12 = 0.3, and observations are taken at ti = 4i, for i = 1, 2, . . .50 with standard deviation σ = 10.

where θ = [k2, k3, k5, k6, k8, k9, k11, k12] is the vector of unknown rate parameters, Yobs = [yobs(t0), . . . , yobs(t50)] are noisy 
observations of the activated protein copy numbers at discrete times (Equation (31)), Ys ∼ s(· | θ) is simulated data of the 
two-step MAPK model using the Gillespie direct method and simulating the observation process (Equation (31)), ε is the 
discrepancy threshold, and the discrepancy metric is ρ(Yobs, Ys) = ‖Yobs − Ys‖2 where ‖ · ‖2 is the Euclidean norm. Inde-
pendent uniform priors are used with k2 ∼ U(0, k1), k3 ∼ U(0, 1), k5 ∼ U(0, k4), k6 ∼ U(0, 1), k8 ∼ U(0, k7), k9 ∼ U(0, 1), 
k11 ∼ U(0, k10), k12 ∼ U(0, 1). We treat the rate parameters of the complex binding in all Michaelis–Menten reactions as 
known with k1 = k4 = 0.001, and k7 = k10.

We apply MF-MLMC-ABC to this problem with L = 7, τ = 0.5, ε1 = 1600, εL = 300, ε� = ε�−1/m for all � = 2, . . . , L and 
m ≈ 1.32, ε̃� = ε� for � = 1, . . . , L, ρτ (Yobs, Yτ

s ) = ‖Yobs − Yτ
s ‖2 with Yτ

s ∼ sτ (· | θ) the approximate stochastic simulation 
process using the tau-leaping method (Algorithm 2), and τ� = τ for � = 1, 2, . . . , L. Just as with the repressilator, we observe 
significant improvements (Fig. 9) against MLMC-ABC, MF-ABC, and ABC rejection sampling. We also show the estimated 
marginal posterior densities for the identifiable parameters, k3, k6 k9, and k12, in Fig. 10.

In this case, MF-MLMC-ABC exceeds two orders of magnitude improvement over both MF-ABC and ABC rejection sam-
pling. It is also clear that the MLMC-ABC approach is still very effective, with almost two orders of magnitude improvement 
over ABC rejection sampling. However, just as with the repressilator model, the MF-MLMC-ABC approach achieves the 
improved convergence rate of MLMC and reduced computation time for each term in the telescoping summation, notwith-
standing a cost reduction in the MLMC tuning overhead.

4. Discussion

In this work, we have introduced a new approach to ABC-based parameter inference for partially observed stochastic 
processes. Our approach combines the benefits of MLMC variance reduction techniques [51,61,62] with the benefits of a 
multifidelity method for reducing stochastic simulation costs [46,47,82]. We have developed the formulation by applying 
the multifidelity weighting scheme directly to the MLMC telescoping summation for ABC inference. Our practical implemen-
tation of the new algorithm demonstrates how various components of the algorithm are tuned and optimised, leading to 
the acceleration of ABC inference by two orders of magnitude for realistic inference problems in systems biology.

These promising results open new avenues for accelerating various ABC-based schemes. While we focus on the accelera-
tion of ABC rejection sampling, this is chosen as a first step toward other schemes. For example, Jasra et al. [61] demonstrate 
an MLMC approach to SMC for ABC, and Prescott and Baker [47] develop an SMC-based implementation of multifidelity ABC. 
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Fig. 9. Comparison of convergence rates for MF-MLMC-ABC (yellow triangles) with MF-ABC (blue crosses), MLMC-ABC (red squares), and ABC rejection 
sampling (black diamonds) using the two-step MAPK model with threshold ε = 300. Rates are estimated by fitting Var

[
f̂
]

∝ C( f̂ )−γ to benchmark data 
using least squares.

Fig. 10. Marginal posterior probability density functions (blue lines) estimated by the for identifiable parameters from the two-stage MAPK cascade model. 
True parameter values are indicated (black dashed lines). Densities were estimated using the MF-MLMC-ABC method with L = 7, τ = 0.5 and ε1 = 1600
and ε7 = 300.

Both of these methods improve upon SMC for ABC and future work combining these methods could produce a multifidelity 
MLMC version of SMC. Further, ABC is not the only likelihood-free method that relies heavily on many stochastic simulations 
from the model, pseudo-marginal methods [23–25] and BSL [28,95] also use simulations to either estimate the likelihood 
function or construct a Gaussian approximation to the likelihood. There may be opportunities to combine MLMC and mul-
tifidelity methods for both these approaches to likelihood-free inference. For example, Jasra et al. [96] consider a MLMC 
approach to particle MCMC and it may be possible to obtain additional benefit from multifidelity methods.
18
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We have also focussed our attention on ABC inference for partially observed discrete-state Markov processes since ABC 
methods are widely applied for such models in systems biology [21,93,97,98], epidemiology [99–103], ecology [104,105], 
and physics [106–108]. Consequently, the high-fidelity and low-fidelity simulations within the MF-ABC framework are, re-
spectively, assumed to be the natural choices of Gillespie’s direct method and the tau-leaping method parameterised by τ . 
However, our methodology supports many other variations, including differences in discrepancy metrics, summary statistics, 
and discrepancy thresholds, that could provide improvements in the ability for the low-fidelity simulation to predict the 
outcome of the high-fidelity simulation and thus reduce the optimal continuation probabilities. Furthermore, the approach 
is generally applicable to any ABC inference problem in which an appropriate approximate simulation scheme can be iden-
tified. For example, there is a wide range of potential choices for approximations that will lead to efficient multifidelity 
sampling [83], such as model reduction [65,109], mean-field or linear approximations [45,66,110,111], or surrogate models 
that act as emulators [112–114]. Finally, recent advances in deep learning provide potential for the automatic construction 
of surrogates [29–31].

An additional novel modification we develop here, with further generalisations developed in Prescott et al. [63], is an 
adaptive scheme for iteratively updating the continuation probabilities (Supplementary Material). This approach is more ro-
bust than previous implementations [46], however, it relies upon a fixed choice of the time-step, τ , in the approximation. 
While this scheme will identify poor choices in τ with η1, η2 → 1, future work should investigate adaptive schemes to 
optimise τ along with η1, η2; this would lead to a near automatic tuning step for MF-MLMC-ABC. Furthermore, a similar 
adaptive optimisation approach could be used to adapt the optimal MLMC sample size sequence to reduce the MLMC tuning 
overhead. However, a more pressing issue with MLMC-based approaches to ABC is the assumption of a fixed sequence of 
discrepancy thresholds [47,61,62], while the state-of-the-art in SMC-ABC is to adaptively select this sequence [38,115]. Such 
adaptive schemes may be possible for MLMC-based ABC especially if applied in an SMC setting. Finally, other variance re-
duction techniques, such as array randomised quasi-Monte Carlo methods for Markov chains, could be applied to accelerate 
estimation of the multifidelity expectations even further [116–118].

Our implementations have been developed efficiently using a high-level programming environment using a single CPU 
core. While this is sufficient to demonstrate the computational benefits of our new algorithm, there are many additional 
optimisation techniques that could also be applied here. In particular, one substantial advantage of utilising MF-MLMC-ABC 
based upon rejection sampling, is that there are few synchronisation steps. Therefore, most of the stochastic simulations (es-
pecially the approximate simulations) can exploit many parallel computing architectures, such as general-purpose graphics 
processing units (GPGPUs) [119–121], single instruction multiple data (SIMD) CPU processors [122,123], and recent ad-
vances in AI hardware [124]. This leads to methods in which the statistical efficiency also directly scales to state-of-the-art 
massively parallel computing.

Finally, our numerical results demonstrate that high performance and high precision Bayesian inference can be performed 
for challenging partially observed stochastic processes such as those that arise in systems biology. We demonstrate this high 
performance for a large network with 12 parameters and 11 chemical species without any dimensionality reduction using 
summary statistics that is almost always required for ABC inference to be viable. With computational improvements of up 
to two orders of magnitude, our method is a significant advance in the use of approximations to accelerate ABC inference 
without incurring accuracy penalties. Furthermore, the success of the multifidelity and MLMC approach to inference will 
enable more realistic and complex models to be used to analyse modern, high resolution data.

Software Availability

Matlab source code with example implementations and demonstrations for all numerical examples presented in this 
work is available on GitHub at https://github .com /davidwarne /MLMCandMultifidelityForABC).

CRediT authorship contribution statement

David J. Warne: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Software, Validation, 
Visualization, Writing – original draft. Thomas P. Prescott: Conceptualization, Formal analysis, Funding acquisition, Method-
ology, Software, Validation, Writing – review & editing. Ruth E. Baker: Conceptualization, Funding acquisition, Methodology, 
Supervision, Writing – review & editing. Matthew J. Simpson: Conceptualization, Funding acquisition, Methodology, Super-
vision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

DJW thanks the Australian Mathematical Society for the Lift-off Fellowship. DJW and MJS acknowledge support from 
the Centre for Data Science at QUT, and the ARC Centre of excellence in Mathematical and Statistical Frontiers (ACEMS; 
19

https://github.com/davidwarne/MLMCandMultifidelityForABC


D.J. Warne, T.P. Prescott, R.E. Baker et al. Journal of Computational Physics 469 (2022) 111543
CE140100049). REB and TPP would like to thank BBSRC/UKRI for funding via grant number BB/R00816/1. REB is supported 
by a Royal Society Wolfson Research Merit Award. TPP is supported by Wave 1 of The UKRI Strategic Priorities Fund under 
the EPSRC Grant EP/W006022/1, particularly the “Shocks and Resilience” theme within that grant, and The Alan Turing 
Institute. MJS is supported by the Australian Research Council (DP200100177). Computational resources were provided by 
the eResearch Office at QUT.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2022 .111543.

References

[1] F. van der Meulen, M. Schauer, Bayesian estimation of incompletely observed diffusions, Int. J. Probab. Stochast. Process. 90 (5) (2017) 641–662, 
https://doi .org /10 .1080 /17442508 .2017.1381097.

[2] P. Dellaportas, N. Friel, G.O. Roberts, Bayesian model selection for partially observed diffusion models, Biometrika 93 (4) (2006) 809–825, https://
doi .org /10 .1093 /biomet /93 .4 .809.

[3] A. Golightly, D.J. Wilkinson, Bayesian sequential inference for nonlinear multivariate diffusions, Stat. Comput. 16 (4) (2006) 323–338, https://doi .org /
10 .1007 /s11222 -006 -9392 -x.

[4] M.B. Elowitz, A.J. Levine, E.D. Siggia, P.S. Swain, Stochastic gene expression in a single cell, Science 297 (2002) 1183–1186, https://doi .org /10 .1126 /
science .1070919.

[5] A. Raj, A. van Oudenaarden, Nature, nurture, or chance: stochastic gene expression and its consequences, Cell 135 (2) (2008) 216–226, https://
doi .org /10 .1016 /j .cell .2008 .09 .050.

[6] D.J. Wilkinson, Stochastic modelling for quantitative description of heterogeneous biological systems, Nat. Rev. Genet. 10 (2009) 122–133, https://
doi .org /10 .1038 /nrg2509.

[7] N. Fedoroff, W. Fontana, Small numbers of big molecules, Science 297 (2002) 1129–1131, https://doi .org /10 .1126 /science .1075988.
[8] W.J. Blake, M. Kaern, C.R. Cantor, J.J. Collins, Noise in eukaryotic gene expression, Nature 422 (2003) 633–637, https://doi .org /10 .1038 /nature01546.
[9] S. Braichenko, J. Holehouse, R. Grima, Distinguishing between models of mammalian gene expression: telegraph-like models versus mechanistic 

models, J. R. Soc. Interface 18 (2021) 20210510, https://doi .org /10 .1098 /rsif .2021.0510.
[10] L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Stochastic resonance, Rev. Mod. Phys. 70 (1) (1998) 223–287, https://doi .org /10 .1103 /RevModPhys .

70 .223.
[11] C.B. Muratov, E. Vanden-Eijnden, E. Weinan, Self-induced stochastic resonance in excitable systems, Physica D 210 (3–4) (2005) 227–240, https://

doi .org /10 .1016 /j .physd .2005 .07.014.
[12] T. Wellens, V. Shatokhin, A. Buchleitner, Stochastic resonance, Rep. Prog. Phys. 67 (1) (2004) 45–105, https://doi .org /10 .1088 /0034 -4885 /67 /1 /R02.
[13] J. Paulsson, O.G. Berg, M. Ehrenberg, Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation, Proc. Natl. Acad. Sci. 97 (13) 

(2000) 7148–7153, https://doi .org /10 .1073 /pnas .110057697.
[14] F. Schlögl, Chemical reaction models for non-equilibrium phase transitions, Z. Phys. 253 (2) (1972) 147–161, https://doi .org /10 .1007 /BF01379769.
[15] J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour, J. Theor. Biol. 81 (3) (1979) 389–400, https://doi .org /10 .1016 /0022 -

5193(79 )90042 -0.
[16] A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, D.B. Rubin, Bayesian Data Analysis, 3rd edition, Chapman & Hall/CRC, 2014.
[17] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (6) 

(1953) 1087–1092, https://doi .org /10 .1063 /1.1699114.
[18] W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1) (1970) 97–109.
[19] P. Del Moral, A. Doucet, A. Jasra, Sequential Monte Carlo samplers, J. R. Stat. Soc., Ser. B, Stat. Methodol. 68 (3) (2006) 411–436, https://doi .org /10 .

1111 /j .1467 -9868 .2006 .00553 .x.
[20] S.A. Sisson, Y. Fan, M. Beaumont, Handbook of Approximate Bayesian Computation, Chapman and Hall/CRC Press, 2018.
[21] M. Sunnåker, A.G. Busetto, E. Numminen, J. Corander, M. Foll, C. Dessimoz, Approximate Bayesian computation, PLoS Comput. Biol. 9 (1) (2013) 

e1002803, https://doi .org /10 .1371 /journal .pcbi .1002803.
[22] D.J. Warne, R.E. Baker, M.J. Simpson, Simulation and inference algorithms for stochastic biochemical reaction networks: from basic concepts to state-

of-the-art, J. R. Soc. Interface 16 (151) (2019) 20180943, https://doi .org /10 .1098 /rsif .2018 .0943.
[23] C. Andrieu, G.O. Roberts, The pseudo-marginal approach for efficient Monte Carlo computations, Ann. Stat. 37 (2) (2009) 697–725.
[24] C. Andrieu, A. Doucet, R. Holenstein, Particle Markov chain Monte Carlo methods, J. R. Stat. Soc., Ser. B, Stat. Methodol. 72 (3) (2010) 269–342.
[25] D.J. Warne, R.E. Baker, M.J. Simpson, A practical guide to pseudo-marginal methods for computational inference in systems biology, J. Theor. Biol. 496 

(2020) 110255, https://doi .org /10 .1016 /j .jtbi .2020 .110255.
[26] Z. An, D.J. Nott, C. Drovandi, Robust Bayesian synthetic likelihood via a semi-parametric approach, Stat. Comput. 30 (3) (2019) 543–557, https://

doi .org /10 .1007 /s11222 -019 -09904 -x.
[27] V.M.H. Ong, D.J. Nott, M.-N. Tran, S.A. Sisson, C.C. Drovandi, Variational Bayes with synthetic likelihood, Stat. Comput. 28 (4) (2017) 971–988, https://

doi .org /10 .1007 /s11222 -017 -9773 -3.
[28] L.F. Price, C.C. Drovandi, A. Lee, D.J. Nott, Bayesian synthetic likelihood, J. Comput. Graph. Stat. 27 (1) (2017) 1–11, https://doi .org /10 .1080 /10618600 .

2017.1302882.
[29] J.-M. Lueckmann, P.J. Goncalves, G. Bassetto, K. Öcal, M. Nonenmacher, J.H. Macke, Flexible statistical inference for mechanistic models of neural 

dynamics, Adv. Neural Inf. Process. Syst. 30 (2017), https://proceedings .neurips .cc /paper /2017 /file /addfa9b7e234254d26e9c7f2af1005cb -Paper.pdf.
[30] G. Papamakarios, D. Sterratt, I. Murray, Sequential neural likelihood: fast likelihood-free inference with autoregressive flows, Proc. Mach. Learn. Res. 

89 (2019) 837–848, https://proceedings .mlr.press /v89 /papamakarios19a .html.
[31] K. Cranmer, J. Brehmer, G. Louppe, The frontier of simulation-based inference, Proc. Natl. Acad. Sci. USA 117 (48) (2020) 30055–30062, https://

doi .org /10 .1073 /pnas .1912789117.
[32] J.K. Pritchard, M.T. Seielstad, A. Perez-Lezaun, M.W. Feldman, Population growth of human y chromosomes: a study of y chromosome microsatellites, 

Mol. Biol. Evol. 16 (12) (1999) 1791–1798, https://doi .org /10 .1093 /oxfordjournals .molbev.a026091.
[33] S. Tavaré, D.J. Balding, R.C. Griffiths, P. Donnelly, Inferring coalescence times from DNA sequence data, Genetics 145 (2) (1997) 505–518.
[34] M.A. Beaumont, W. Zhang, D.J. Balding, Approximate Bayesian computation in population genetics, Genetics 162 (4) (2002) 2025–2035.
[35] P. Marjoram, J. Molitor, V. Plagnol, S. Tavaré, Markov chain Monte Carlo without likelihoods, Proc. Natl. Acad. Sci. USA 100 (26) (2003) 15324–15328, 

https://doi .org /10 .1073 /pnas .0306899100.
20

https://doi.org/10.1016/j.jcp.2022.111543
https://doi.org/10.1080/17442508.2017.1381097
https://doi.org/10.1093/biomet/93.4.809
https://doi.org/10.1093/biomet/93.4.809
https://doi.org/10.1007/s11222-006-9392-x
https://doi.org/10.1007/s11222-006-9392-x
https://doi.org/10.1126/science.1070919
https://doi.org/10.1126/science.1070919
https://doi.org/10.1016/j.cell.2008.09.050
https://doi.org/10.1016/j.cell.2008.09.050
https://doi.org/10.1038/nrg2509
https://doi.org/10.1038/nrg2509
https://doi.org/10.1126/science.1075988
https://doi.org/10.1038/nature01546
https://doi.org/10.1098/rsif.2021.0510
https://doi.org/10.1103/RevModPhys.70.223
https://doi.org/10.1103/RevModPhys.70.223
https://doi.org/10.1016/j.physd.2005.07.014
https://doi.org/10.1016/j.physd.2005.07.014
https://doi.org/10.1088/0034-4885/67/1/R02
https://doi.org/10.1073/pnas.110057697
https://doi.org/10.1007/BF01379769
https://doi.org/10.1016/0022-5193(79)90042-0
https://doi.org/10.1016/0022-5193(79)90042-0
http://refhub.elsevier.com/S0021-9991(22)00605-2/bib2D9F9E8D5EBDCCEE1BCD79A3334839BAs1
https://doi.org/10.1063/1.1699114
http://refhub.elsevier.com/S0021-9991(22)00605-2/bib694230C3A5E9D6FD8F0276C37355F1DAs1
https://doi.org/10.1111/j.1467-9868.2006.00553.x
https://doi.org/10.1111/j.1467-9868.2006.00553.x
http://refhub.elsevier.com/S0021-9991(22)00605-2/bib797E44FD8FB32638D381C2CFEF1FBA4Bs1
https://doi.org/10.1371/journal.pcbi.1002803
https://doi.org/10.1098/rsif.2018.0943
http://refhub.elsevier.com/S0021-9991(22)00605-2/bibC1A6AB926F80C26DFD6389D8805C04DCs1
http://refhub.elsevier.com/S0021-9991(22)00605-2/bib7A29F5F0390CFE4B9879AF8FE6394CFDs1
https://doi.org/10.1016/j.jtbi.2020.110255
https://doi.org/10.1007/s11222-019-09904-x
https://doi.org/10.1007/s11222-019-09904-x
https://doi.org/10.1007/s11222-017-9773-3
https://doi.org/10.1007/s11222-017-9773-3
https://doi.org/10.1080/10618600.2017.1302882
https://doi.org/10.1080/10618600.2017.1302882
https://proceedings.neurips.cc/paper/2017/file/addfa9b7e234254d26e9c7f2af1005cb-Paper.pdf
https://proceedings.mlr.press/v89/papamakarios19a.html
https://doi.org/10.1073/pnas.1912789117
https://doi.org/10.1073/pnas.1912789117
https://doi.org/10.1093/oxfordjournals.molbev.a026091
http://refhub.elsevier.com/S0021-9991(22)00605-2/bib428FDE92C2343F2C4CBF7BE9CAC2C033s1
http://refhub.elsevier.com/S0021-9991(22)00605-2/bib9885A2DED20737A63281ECDFF29C0B64s1
https://doi.org/10.1073/pnas.0306899100


D.J. Warne, T.P. Prescott, R.E. Baker et al. Journal of Computational Physics 469 (2022) 111543
[36] S.A. Sisson, Y. Fan, M.M. Tanaka, Sequential Monte Carlo without likelihoods, Proc. Natl. Acad. Sci. USA 104 (6) (2007) 1760–1765, https://doi .org /10 .
1073 /pnas .0607208104.

[37] P. Del Moral, A. Doucet, A. Jasra, An adaptive sequential Monte Carlo method for approximate Bayesian computation, Stat. Comput. 22 (5) (2012) 
1009–1020, https://doi .org /10 .1007 /s11222 -011 -9271 -y.

[38] C.C. Drovandi, A.N. Pettitt, Estimation of parameters for macroparasite population evolution using approximate Bayesian computation, Biometrics 
67 (1) (2011) 225–233, https://doi .org /10 .1111 /j .1541 -0420 .2010 .01410 .x.

[39] J.J. Bon, A. Lee, C. Drovandi, Accelerating sequential Monte Carlo with surrogate likelihoods, Stat. Comput. 31 (2021) 62, https://doi .org /10 .1007 /
s11222 -021 -10036 -4, arXiv:2009 .03699.

[40] M. Banterle, C. Grazian, A. Lee, C.P. Robert, Accelerating Metropolis-Hastings algorithms by delayed acceptance, Foundations Data Sci. 1 (2) (2019) 
103–128, https://doi .org /10 .3934 /fods .2019005.
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