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Likelihood-free Bayesian inference algorithms are popular methods for inferring the parameters 
of complex stochastic models with intractable likelihoods. These algorithms characteristically 
rely heavily on repeated model simulations. However, whenever the computational cost of 
simulation is even moderately expensive, the significant burden incurred by likelihood-free 
algorithms leaves them infeasible for many practical applications. The multifidelity approach has 
been introduced in the context of approximate Bayesian computation to reduce the simulation 
burden of likelihood-free inference without loss of accuracy, by using the information provided 
by simulating computationally cheap, approximate models in place of the model of interest. In 
this work we demonstrate that multifidelity techniques can be applied in the general likelihood-

free Bayesian inference setting. Analytical results on the optimal allocation of computational 
resources to simulations at different levels of fidelity are derived, and subsequently implemented 
practically. We provide an adaptive multifidelity likelihood-free inference algorithm that learns 
the relationships between models at different fidelities and adapts resource allocation accordingly, 
and demonstrate that this algorithm produces posterior estimates with near-optimal efficiency.

1. Introduction

Across domains in engineering and science, parametrised mathematical models are often too complex to analyse directly. Instead, 
many outer-loop applications [1], such as model calibration, optimization, and uncertainty quantification, rely on repeated simulation 
to understand the relationship between model parameters and behaviour. In time-sensitive and cost-aware applications, the typical 
computational burden of such simulation-based methods makes them impractical. Multifidelity methods, reviewed by Peherstorfer 
et al. [1,2] and Ng and Willcox [3], are a family of approaches that exploit information gathered from simulations, not only of 
a single model of interest, but also of additional approximate or surrogate models. In this article, the term model refers to the 
underlying mathematical abstraction of a system in combination with the computer code used to implement simulations. Thus, 
‘model approximation’ may refer to mathematical simplifications and/or approximations in numerical methods. The fundamental 
challenge when implementing multifidelity techniques is the allocation of computational resources between different models, for the 
purposes of balancing a characteristic trade-off between maintaining accuracy and saving computational burden.
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In this work, we consider a specific outer-loop application that arises in Bayesian statistics, the goal of which is to calibrate a 
parametrised model against observed data. Bayesian inference uses the likelihood of the observed data to update a prior distribution 
on the model parameters into a posterior distribution, according to Bayes’s rule. In the situation where the likelihood of the data 
cannot be calculated, we rely on so-called likelihood-free methods that provide estimates of the likelihood by comparing model 
simulations to data. For example, approximate Bayesian computation (ABC) is a widely-known likelihood-free inference technique [4,

5] where the likelihood is typically estimated as a binary value that records whether or not the distance between a simulation and 
the observed data falls within a given threshold. Other likelihood-free methods are also available, such as pseudo-marginal methods 
and Bayesian synthetic likelihoods (BSL) [6]. In this work, we develop a generalised likelihood-free framework for which ABC, 
pseudo-marginal and BSL can be expressed as specific cases, as described in Section 2.1.

The significant cost of likelihood-free inference has motivated several successful proposals for improving the efficiency of 
likelihood-free samplers, such as ABC-MCMC [7] and ABC-SMC [8–10]. These approaches aim to efficiently explore parameter 
space by avoiding the proposal of low-likelihood parameters, reducing the required number of expensive simulations required and 
improving the ABC acceptance rate. However, an ‘orthogonal’ technique for improving the efficiency of likelihood-free inference is 
to instead ensure that each simulation-based likelihood estimate is, on average, less computationally expensive to generate.

In previous work, Prescott and Baker [11,12] investigated multifidelity approaches to likelihood-free Bayesian inference [13], 
with a specific focus on ABC [4,5]. Suppose that there exists a low-fidelity approximation to the parametrised model of interest, 
and that the approximation is relatively cheap to simulate. Monte Carlo estimates of the posterior distribution, with respect to the 
likelihood of the original high-fidelity model, can be constructed using the simulation outputs of the low-fidelity approximation. 
Prescott and Baker [11] showed that using the low-fidelity approximation introduces no further bias, so long as, for any parameter 
proposal, there is a positive probability of simulating the high-fidelity model to check and potentially correct a low-fidelity likelihood 
estimate. The key to the success of the multifidelity ABC (MF-ABC) approach is to choose this positive probability to be suitably 
small, thereby simulating the original model as little as possible, while ensuring it is large enough that the variance of the resulting 
Monte Carlo estimate is suitably small. The result of the multifidelity approach is to reduce the expected cost of estimating the 
likelihood for each parameter proposal in any Monte Carlo sampling algorithm. In subsequent work, Prescott and Baker [12] showed 
that this approach integrates with sequential Monte Carlo (SMC) sampling for efficient parameter space exploration [9,10,14], and 
Warne et al. [15] demonstrated its applicability to multilevel Monte Carlo Guha and Tan [16], Jasra et al. [17], Warne et al. [18]. 
Thus, the synergistic effect of combining multifidelity with other Monte Carlo schemes to improve the efficiency of ABC has been 
demonstrated.

Multifidelity ABC can be compared with previous techniques for exploiting model approximation in ABC, such as Preconditioning 
ABC [19], Lazy ABC (LZ-ABC) [20], and Delayed Acceptance ABC (DA-ABC) [21,22]. The preconditioning approach seeks to explore 
parameter space more efficiently, by proposing parameters for high-fidelity simulation with greater low-fidelity posterior mass. In 
contrast, each of MF-ABC, LZ-ABC, and DA-ABC seeks to make each parameter proposal quicker to evaluate, on average, by using 
the output of the low-fidelity simulation to directly decide whether to simulate the high-fidelity model. In both LZ-ABC and DA-

ABC, a parameter proposal is either (a) rejected early, based on the simulated output of the low-fidelity model, or (b) sent to a 
high-fidelity simulation, to make a final decision on ABC acceptance or rejection. The distinctive aspect of MF-ABC is that step (a) 
is different; it is not necessary to reject early to avoid high-fidelity simulation. Instead the low-fidelity simulation can be used to 
make the accept/reject decision directly. In both DA-ABC and MF-ABC, the decision between (a) or (b) is based solely on whether 
the low-fidelity simulation would be accepted or rejected. In contrast, LZ-ABC allows for a much more generic decision of whether 
to simulate the high-fidelity model, requiring an extensive exploration of practical tuning methods.

More generally, there are multifidelity methods that exploit tractable surrogate models and apply subsequent adaptations or 
transformations to correct for bias in this surrogate. For example, Yan and Zhou [23,24] adaptively tune surrogate models based on 
polynomial chaos or deep learning methods, and Bon et al. [25] use a population of surrogates and moment-matching transformations 
in a similar sense to Warne et al. [19]. While these approaches are of interest, we primarily focus on multifidelity schemes that 
are strictly simulation-based. However, we note that surrogate likelihood approaches can also be expressed within our theoretical 
framework.

In this paper, we show that the multifidelity approach can be applied to any simulation-based likelihood-free inference method-

ology, including but not limited to ABC. We achieve this by developing a generalised framework for likelihood-free inference, and 
deriving a multifidelity method to operate in this framework. A successful multifidelity likelihood-free inference algorithm requires 
us to determine how many simulations of the high-fidelity model to perform, based on the parameter value and the simulated out-

put of the low-fidelity model. We provide theoretical results and practical, automated tuning methods to allocate computational 
resources between two models, designed to optimise the performance of multifidelity likelihood-free importance sampling.

1.1. Outline

In Section 2 we introduce a generalised framework for likelihood-free Bayesian inference for which standard approaches are 
shown to be a special case. In Section 3 a general multifidelity likelihood-free importance sampler is constructed based on the 
MF-ABC approach of Prescott and Baker [11]. This section also explores how to practically allocate computation between model 
fidelities, by adaptively evolving the allocation in response to learned relationships between simulations at each fidelity across 
parameter space. Analysis is presented in Section 4, including the proofs of the main results set out in Section 3.3, in which we 
determine the optimal allocation of computational resources between the two models to achieve the best possible performance 
2

of multifidelity inference. We illustrate adaptive multifidelity inference by applying the algorithm to a fundamental biochemical 
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network motif in Section 5. We show that, using a low-fidelity Michaelis–Menten approximation together with the exact model (both 
simulated using the exact algorithm of [26]) our adaptive implementation of multifidelity likelihood-free inference can achieve a 
quantifiable speed-up in constructing posterior estimates to a specified variance and with no additional bias. Code for this example, 
developed in Julia 1.6.2 [27], is available at github.com/tpprescott/mf-lf. Finally, in Section 6 we discuss how greater 
improvements may be achieved for more challenging inference tasks.

2. Likelihood-free inference

We consider a stochastic model of the data generating process, defined by a distribution with parametrised probability density 
function, 𝑓 (⋅ ∣ 𝜃), where the parameter vector 𝜃 takes values in a parameter space Θ. For any 𝜃 ∈ Θ, the model induces a probability 
density, denoted 𝑓 (𝑦 ∣ 𝜃), on observable outputs, with 𝑦 taking values in an output space Y. We note that the model is usually 
implemented in computer code to allow simulation, through which outputs 𝑦 ∈Y can be generated. We write 𝑦 ∼ 𝑓 (⋅ ∣ 𝜃) to denote 
simulation of the model 𝑓 given parameter values 𝜃. Taking the experimentally observed data 𝑦0 ∈ Y, we define the likelihood 
function to be a function of 𝜃 using the density, L(𝜃) = 𝑓 (𝑦0 ∣ 𝜃), of the observed data under this model.

Bayesian inference updates prior knowledge of the parameter values, 𝜃 ∈Θ, which we encode in a prior distribution with density 
𝜋(𝜃). The information provided by the experimental data, encoded in the likelihood function, L(𝜃), is combined with the prior using 
Bayes’ rule to form a posterior distribution, with density

𝜋(𝜃 ∣ 𝑦0) =
L(𝜃)𝜋(𝜃)

𝑍
,

where 𝑍 = ∫ L(𝜃)𝜋(𝜃) d𝜃 normalises 𝜋(⋅ ∣ 𝑦0) to be a probability distribution on Θ. For a given, arbitrary, integrable function 𝐺 ∶ Θ →
ℝ, we take the goal of the inference task as the production of a Monte Carlo estimate of the posterior expectation,

𝐄(𝐺 ∣ 𝑦0) = ∫ 𝐺(𝜃)𝜋(𝜃 ∣ 𝑦0) d𝜃,

conditioned on the observed data.

2.1. Approximating the likelihood with simulation

In most practical settings, models tend to be sufficiently complicated that calculating L(𝜃) = 𝑓 (𝑦0 ∣ 𝜃) for 𝜃 ∈ Θ is intractable. In 
this case, we exploit the ability to produce independent simulations from the model, 𝐲 = (𝑦1, … , 𝑦𝐾 ) with 𝑦𝑘 ∼ 𝑓 (⋅ ∣ 𝜃). In the following, 
we will slightly abuse notation by using the shorthand 𝐲 ∼ 𝑓 (⋅ ∣ 𝜃) to represent 𝐾 independent, identically distributed draws from the 
parametrised distribution 𝑓 (⋅ ∣ 𝜃).

Given the observed data, 𝑦0, we can define a real-valued function, referred to as a likelihood-free weighting, 𝜔 ∶ (𝜃, 𝐲) ↦ℝ, which 
varies over the joint space of parameter values and simulation outputs. Here, 𝜔 is a function of a parameter value, 𝜃, and a vector, 
𝐲, of stochastic simulations. For a fixed 𝜃, we can take conditional expectations of 𝜔(𝜃, 𝐲) over the probability density of simulations, 
𝑓 (𝐲 ∣ 𝜃), to define an approximate likelihood function,

𝐿𝜔(𝜃) = 𝐄(𝜔 ∣ 𝜃) = ∫ 𝜔(𝜃,𝐲)𝑓 (𝐲 ∣ 𝜃) d𝐲, (1)

where 𝜔(𝜃, 𝐲) is chosen such that 𝐿𝜔(𝜃) is an appropriate approximation to the modelled likelihood function, L(𝜃). The determination 
of what is appropriate as an approximation will depend on the implementation or application. For example, weights corresponding to 
BSL will not be appropriate if the distribution of the summary statistics are highly non-Gaussian. Similarly, within an ABC setting, it 
is not appropriate to choose a very large discrepancy threshold, as this will lead to 𝐿𝜔(𝜃) ≈ 1 for any 𝜃 due to very few proposals being 
rejected. For standard likelihood-free methods, such as ABC, BSL and pseudo-marginal methods, the likelihood-free weighting, 𝜔(𝜃, 𝐲), 
is a random variable (since it is a function of 𝐾 stochastic simulations) and a Monte Carlo estimate of the approximate likelihood 
function, 𝐿𝜔(𝜃). The explicit form of this Monte Carlo estimate is implementation specific (see Appendix A). While we focus here on 
the Monte Carlo setting, it is worth highlighting that 𝜔(𝜃, 𝐲) may be treated as a deterministic function of 𝜃 (thus independent of any 
stochastic simulations) in order to implement a likelihood function, surrogate likelihood function, or some alternative loss function. 
For example, if 𝜔(𝜃, 𝐲) = 𝑓 (𝑦0 ∣ 𝜃) then Equation (1) reduces to 𝐿𝜔(𝜃) =L(𝜃).

The approximate likelihood function is used to define the likelihood-free approximation to the posterior,

𝜋𝜔(𝜃 ∣ 𝑦0) =
𝐿𝜔(𝜃)𝜋(𝜃)

𝑍𝜔

,

with the normalisation constant 𝑍𝜔 = ∫Θ𝐿𝜔(𝜃)𝜋(𝜃) d𝜃. The likelihood-free approximation to the posterior, 𝜋𝜔(𝜃 ∣ 𝑦0), subsequently 
induces a potentially biased approximation of 𝐄(𝐺 ∣ 𝑦0), given by

𝐄𝜋𝜔
(𝐺 ∣ 𝑦0) = ∫ 𝐺(𝜃)𝜋𝜔(𝜃 ∣ 𝑦0) d𝜃.

In this situation, the success of likelihood-free inference depends on ensuring that the likelihood-free weighting, 𝜔(𝜃, 𝐲) is chosen 
such that the squared difference (𝐄(𝐺 ∣ 𝑦0) −𝐄𝜋𝜔

(𝐺 ∣ 𝑦0))2 between the posterior expectation, 𝐄(𝐺 ∣ 𝑦0), and its likelihood-free approx-
3

imation, 𝐄𝜋𝜔
(𝐺 ∣ 𝑦0), is as small as possible. Most importantly, the accuracy of the likelihood-free approximation is entirely encoded 

https://github.com/tpprescott/mf-lf


Journal of Computational Physics 496 (2024) 112577T.P. Prescott, D.J. Warne and R.E. Baker

in the weighting function, and in most, but not all, cases this will be biased. For example, standard likelihood-free methods such as 
ABC, BSL and pseudo-marginal methods can be implemented using different choices for 𝜔(𝜃, 𝐲) (see Appendix A), however, only ABC 
and BSL introduce bias.

2.2. Likelihood-free importance sampling

A direct approach to estimating the likelihood-free approximate posterior expectation, 𝐄𝜋𝜔
(𝐺 ∣ 𝑦0), is to use importance sampling. 

We assume that parameter proposals 𝜃𝑖 ∼ 𝑞(⋅), for 𝑖 = 1, … , 𝑁 , can be sampled from a given importance distribution, the support of 
which must include the prior support, that is, 𝑞(𝜃) ≠ 0 if 𝜋(𝜃) > 0. In practice, we need only know the importance density, 𝑞(𝜃), up to 
a multiplicative constant. We also assume that we have access to the prior probability density, 𝜋(𝜃).

The likelihood-free importance sampling algorithm is described in Algorithm 1. This algorithm requires the specification of an 
importance distribution, 𝑞, and a likelihood-free weighting, 𝜔(𝜃, 𝐲), with conditional expectation, 𝐿𝜔(𝜃) = 𝐄(𝜔 ∣ 𝜃). The output of Al-

gorithm 1, 𝐺̂, is an estimate of the likelihood-free approximate posterior expectation, 𝐄𝜋𝜔
(𝐺 ∣ 𝑦0). We show (Section 4, Theorem 1), 

the standard result that 𝐺̂ is a consistent estimate of 𝐄𝜋𝜔
(𝐺 ∣ 𝑦0), and quantify the dominant behaviour of the mean-squared error 

(MSE) in the limit of large sample sizes, 𝑁 →∞.

Algorithm 1 Likelihood-free importance sampling.

Require: Prior, 𝜋; importance distribution, 𝑞; likelihood-free weighting, 𝜔; model 𝑓 (⋅ ∣ 𝜃); target function, 𝐺.

for 𝑖 ∈ [1, 2, … , 𝑁] do

Sample 𝜃𝑖 ∼ 𝑞(⋅);
Simulate 𝐲𝑖 ∼ 𝑓 (⋅ ∣ 𝜃𝑖);
Calculate weight 𝑤𝑖 =𝑤(𝜃𝑖, 𝐲𝑖) =

𝜋(𝜃𝑖)
𝑞(𝜃𝑖)

𝜔(𝜃𝑖, 𝐲𝑖);
end for

Estimate expectation using weighted sum, 𝐺̂ =
∑𝑁

𝑖=1 𝑤𝑖𝐺(𝜃𝑖)∑𝑁

𝑗=1 𝑤𝑗

.

In obtaining the consistency result, we also determine the leading-order behaviour of the MSE of the output of Algorithm 1 in 
terms of sample size,

𝐄
(
(𝐺̂ −𝐄𝜋𝜔

(𝐺 ∣ 𝑦0))2
)
=
⎡⎢⎢⎢⎣
𝐄
(
𝑊 2(𝐺(𝜃) −𝐄𝜋𝜔

(𝐺 ∣ 𝑦0))2
)

𝐄(𝑊 )2

⎤⎥⎥⎥⎦
1
𝑁

+𝑂
( 1
𝑁2

)
, (2)

where 𝑊 is the random variable for the value of the importance weight, 𝑤, as defined in Algorithm 1. For later formulations it 
is more useful to denote 𝑐𝑖 as the random computational cost of the 𝐾 stochastic simulations, 𝐲𝑖 ∼ 𝑓 (⋅|𝜃𝑖), then consider a fixed 
computational budget, 𝐶tot, rather than a fixed sample size. That is, we take 𝑁 as the largest index 𝑖 for which ∑𝑖

𝑗=1 𝑐𝑗 ≤ 𝐶tot. We 
can also quantify the performance of this algorithm in terms of how the MSE decreases with increasing the overall computational 
budget. To leading-order this is given by (Section 4, Corollary 2)

𝐄
(
(𝐺̂ −𝐄𝜋𝜔

(𝐺 ∣ 𝑦0))2
)
=
⎡⎢⎢⎢⎣
𝐄(𝐶)𝐄

(
𝑊 2(𝐺(𝜃) −𝐄𝜋𝜔

(𝐺 ∣ 𝑦0))2
)

𝐄(𝑊 )2

⎤⎥⎥⎥⎦
1

𝐶tot
+𝑂

(
1

𝐶2
tot

)
. (3)

We can use the leading-order coefficient of 1∕𝐶tot in Equation (3) to quantify the performance of likelihood-free importance 
sampling. Importantly, this expression explicitly depends on the expected computational cost, 𝐶 , of each iteration of Algorithm 1 and 
the variance of the weighted errors, 𝑤(𝐺(𝜃) −𝐄𝜋𝜔

(𝐺 ∣ 𝑦0)). In the importance sampling context, the optimal importance distribution 𝑞
should seek to minimise this coefficient. This is achieved by minimisation of the numerator, 𝐄(𝐶)𝐄 

(
𝑊 2(𝐺(𝜃) −𝐄𝜋𝜔

(𝐺 ∣ 𝑦0))2
)

, that is, 
by trading off a preference for parameter values with lower computational burden against ensuring small variability in the weighted 
errors. However, in addition to tuning the proposal mechanism, 𝑞, Equation (3) also provides insight into how approximations might 
be used to directly reduce the leading-order coefficient in Equation (3), based on the identified trade-off between decreasing the 
expected computational burden and controlling the variance of the weighted error. We will not consider the tuning of 𝑞 any further 
in this work, but rather highlight that the trade-off presented here motivates the formulation and optimisation of a generalised 
multifidelity likelihood-free inference scheme.

3. Multifidelity inference

In Equation (3), the performance of Algorithm 1 is quantified explicitly in terms of how the Monte Carlo error between the 
estimate, 𝐺̂, and the approximated posterior mean, 𝐄𝜋𝜔

(𝐺 ∣ 𝑦0), decays with increasing computational budget, 𝐶tot . It initially appears 
reasonable to conclude that the linear dependence of the performance on the expected iteration time, 𝐄(𝐶), implies that if we can 
4

speed up the simulation step of Algorithm 1, then we can significantly reduce the MSE for a given computational budget.
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Suppose that there exists an alternative model that we can use in Algorithm 1 in place of the original model, 𝑓 (⋅ ∣ 𝜃), such that the 
expected computation time for each iteration, 𝐄(𝐶), is significantly reduced. There are two important issues that prevent this being 
a viable option for improving the efficiency of likelihood-free inference. The first problem is that we need to be able to quantify 
the effect of the alternative model on the ratio 𝐄(𝑊 2(𝐺(𝜃) − 𝐄𝜋𝜔

(𝐺 ∣ 𝑦0))2)∕𝐄(𝑊 )2 to ensure that the overall performance of the 
algorithm is improved. It is not sufficient to show that the computational burden of each iteration is reduced, since it is possible that 
substantially more iterations are subsequently required to achieve a specified MSE.

The second problem arises from the observation that the limiting value of 𝐺̂, as output from Algorithm 1, is 𝐄𝜋𝜔
(𝐺 ∣ 𝑦0), with 

residual bias,

lim
𝐶tot→∞

𝐄
((

𝐺̂ −𝐄(𝐺 ∣ 𝑦0)
)2) = (𝐄𝜋𝜔

(𝐺 ∣ 𝑦0) −𝐄(𝐺 ∣ 𝑦0))2 ≠ 0,

recalling that 𝐄𝜋𝜔
(𝐺 ∣ 𝑦0) is the approximate posterior expectation induced by 𝐿𝜔(𝜃) = 𝐄(𝜔 ∣ 𝜃), and the approximand, 𝐄(𝐺 ∣ 𝑦0), is 

the posterior expectation induced by the likelihood, L(𝜃) = 𝑓 (𝑦0 ∣ 𝜃). We will identify this limiting residual squared bias, (𝐄𝜋𝜔
(𝐺 ∣

𝑦0) − 𝐄(𝐺 ∣ 𝑦0))2, as the fidelity of the model/likelihood-free weighting pair. We emphasise here that the fidelity depends both on 
the model and the likelihood-free weighting used in Algorithm 1, and is contextual to the target function, 𝐺. For a given posterior 
mean, 𝐄(𝐺 ∣ 𝑦0), a model and likelihood-free weighting pair for which the value of (𝐄𝜋𝜔

(𝐺 ∣ 𝑦0) − 𝐄(𝐺 ∣ 𝑦0))2 is small will be termed 
high-fidelity, while larger values of (𝐄𝜋𝜔

(𝐺 ∣ 𝑦0) − 𝐄(𝐺 ∣ 𝑦0))2 are termed low-fidelity. Thus, if we use an alternative model in place 
of 𝑓 in Algorithm 1, the model (and likelihood-free weighting) may be too low-fidelity, in the sense of having too large a residual 
squared bias versus the posterior expectation of interest, 𝐄(𝐺 ∣ 𝑦0).

The multifidelity framework overcomes both these problems, by removing the need for a binary choice between the expensive 
model of interest and its cheaper alternative. Instead, we carry out likelihood-free inference using information from both models. In 
the sections that follow, we will only consider two levels of model fidelity. However, in Section 6, we discuss possible extensions for 
a truly multifidelity setting with multiple approximations as our approach need not be restricted to only two models.

3.1. Multifidelity likelihood-free importance sampling

We denote the high-fidelity model and likelihood-free weighting as 𝑓hi and 𝜔hi, respectively. The likelihood under the high-fidelity 
model is denoted Lhi(𝜃) = 𝑓hi(𝑦0 ∣ 𝜃), and is assumed to be intractable. Following the notation introduced in Equation (1), the high-

fidelity pair 𝑓hi and 𝜔hi induce the approximate likelihood, 𝐿𝜔hi
(𝜃) = 𝐄(𝜔hi ∣ 𝜃) and the corresponding likelihood-free approximation 

to the posterior expectation, 𝐄𝜋𝜔hi
(𝐺 ∣ 𝑦0). We further assume that simulating each 𝐲hi ∼ 𝑓hi(⋅ ∣ 𝜃) is computationally expensive. This 

computational expense motivates the use of an approximate, low-fidelity model and likelihood-free weighting, denoted 𝑓lo and 
𝜔lo, respectively, inducing the approximate likelihood, 𝐿𝜔lo

(𝜃)) = 𝐄(𝜔lo ∣ 𝜃), and corresponding likelihood-free approximation to the 
posterior expectation, 𝐄𝜋𝜔lo

(𝐺 ∣ 𝑦0). We note that the low-fidelity model, 𝑓lo, induces its own likelihood, Llo(𝜃) = 𝑓lo(𝑦0 ∣ 𝜃), and 
assume that this remains intractable, requiring a simulation-based Bayesian approach. However, we assume that simulations of the 
low-fidelity model, 𝐲lo ∼ 𝑓lo(⋅ ∣ 𝜃), are significantly cheaper to produce compared to simulations of the high-fidelity model, that is 
𝐄(𝐶lo)∕𝐄(𝐶hi) ≪ 1, where 𝐶lo and 𝐶hi denote the random computational time of 𝐾 simulations from the low-fidelity and high-fidelity 
model, respectively.

Given the models 𝑓lo and 𝑓hi, we will term the joint distribution 𝑓mf (𝐲lo, 𝐲hi ∣ 𝜃) a multifidelity model when 𝑓mf has marginals equal 
to the low- and high-fidelity densities, 𝑓lo(𝐲lo ∣ 𝜃) and 𝑓hi(𝐲hi ∣ 𝜃). The models may be conditionally independent, such that 𝑓mf (𝐲lo, 𝐲hi ∣
𝜃) = 𝑓lo(𝐲lo ∣ 𝜃)𝑓hi(𝐲hi ∣ 𝜃), in which case simulations at each model fidelity can be carried out independently given 𝜃. Furthermore, 
if the simulations are conditionally independent, this means that the resulting likelihood-free weights, 𝜔lo(𝜃, 𝐲lo) and 𝜔hi(𝜃, 𝐲hi), 
are also conditionally independent. However, in the more general definition of the multifidelity model as a joint distribution, we 
allow for coupling between the two fidelities. Conditioned on the low-fidelity simulations, 𝐲lo, and on parameter values, 𝜃, we can 
produce a coupled simulation, 𝐲hi, from the density 𝑓hi(𝐲hi ∣ 𝜃, 𝐲lo) implied by 𝑓mf (𝐲lo, 𝐲hi ∣ 𝜃) = 𝑓hi(𝐲hi ∣ 𝜃, 𝐲lo)𝑓lo(𝐲lo ∣ 𝜃). If appropriately 
constructed, coupling imposes positive correlations between the resulting likelihood-free weights, 𝜔lo(𝜃, 𝐲lo) and 𝜔hi(𝜃, 𝐲hi), to enable 
values of 𝜔lo to provide more information about unknown values of 𝜔hi, thereby acting as a variance reduction technique [28]. 
Implementation of such a variance reduction approach results in a construction related to a randomised multilevel Monte Carlo 
scheme [15,29,30]. It should be noted, however, that the success of our multifidelity scheme does not strictly rely on finding an 
appropriate coupling mechanism. This is an advantage of our approach since such coupling mechanisms can be challenging to 
construct.

We can calculate a multifidelity likelihood-free weighting as follows. Let 𝑀 be any non-negative integer-valued random variable, 
with conditional probability mass function 𝑝(⋅ ∣ 𝜃, 𝐲lo), and with a positive conditional mean, 𝜇(𝜃, 𝐲lo) = 𝐄(𝑀 ∣ 𝜃, 𝐲lo) > 0. Given a 
parameter value, 𝜃, we define 𝐳 = (𝐲lo, 𝐲hi,1, 𝐲hi,2, … , 𝐲hi,𝑚), with 𝐲lo ∼ 𝑓lo(⋅ ∣ 𝜃), 𝑚 ∼ 𝑝(⋅ ∣ 𝜃, 𝐲lo), and 𝐲hi,𝑖 ∼ 𝑓hi(⋅ ∣ 𝜃, 𝐲lo), noting that each 
𝐲hi,𝑖 may be coupled to the low-fidelity simulation 𝐲lo ∼ 𝑓lo(⋅ ∣ 𝜃). We further define the multifidelity likelihood-free weighting function,

𝜔mf (𝜃, 𝐳) = 𝜔lo(𝜃,𝐲lo) +
1

𝑚∑[
𝜔hi(𝜃,𝐲hi,𝑖) −𝜔lo(𝜃,𝐲lo)

]
, (4)
5

𝜇(𝜃,𝐲lo) 𝑖=1
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as the low-fidelity likelihood-free weighting, corrected by a randomly drawn number, 𝑀 = 𝑚, of conditionally independent high-

fidelity likelihood-free weightings. We write the density of 𝐳 as 𝜙(𝐳 ∣ 𝜃) and take expectations over 𝐳 to obtain

𝐿𝜔mf
(𝜃) = 𝐄(𝜔mf ∣ 𝜃) = ∫ 𝜔mf (𝜃, 𝐳)𝜙(𝐳 ∣ 𝜃) d𝐳 (5)

as the multifidelity approximation to the likelihood.

Given 𝑀 =𝑚, only 𝑚 replicates of 𝐲hi,𝑖 ∼ 𝑓hi(⋅ ∣ 𝜃, 𝐲lo) need to be simulated for 𝜔mf (𝜃, 𝐳) to be evaluated. Thus, whenever 𝑚 = 0, this 
means that no high-fidelity simulations need to be completed for 𝜔mf (𝜃, 𝐳) to be calculated, removing the high-fidelity simulation 
cost from that iteration. Algorithm 2 presents the adaptation of the basic importance sampling method of Algorithm 1 to incorporate 
the multifidelity weighting function. The simulation step, 𝐲 ∼ 𝑓 (⋅ ∣ 𝜃), in Algorithm 1 is replaced by the MF-SIMULATE function 
in Algorithm 2.

Algorithm 2 Multifidelity likelihood-free importance sampling.

Require: Prior, 𝜋; importance distribution, 𝑞; likelihood-free weightings, 𝜔hi and 𝜔lo ; models 𝑓hi(⋅ ∣ 𝜃) and 𝑓lo(⋅ ∣ 𝜃); conditional probability mass function 𝑝(⋅ ∣ 𝜃, 𝐲lo)
on non-negative integers with mean function 𝜇(𝜃, 𝐲lo); target estimated function, 𝐺.

for 𝑖 ∈ [1, 2, … 𝑁] do

Sample 𝜃𝑖 ∼ 𝑞(⋅);
Generate 𝐳𝑖 ∼ 𝜙(⋅ ∣ 𝜃𝑖) from MF-SIMULATE(𝜃𝑖);

For 𝜔mf in Equation (4), calculate the weight 𝑤𝑖 =𝑤mf (𝜃, 𝐳𝑖) =
𝜋(𝜃𝑖)
𝑞(𝜃𝑖)

𝜔mf (𝜃𝑖, 𝐳𝑖);
end for

Estimate expectation using weighted sum, 𝐺̂mf =
∑𝑁

𝑖=1 𝑤𝑖𝐺(𝜃𝑖)∑𝑁

𝑗=1 𝑤𝑗

.

function MF-SIMULATE(𝜃)

Simulate 𝐲lo ∼ 𝑓lo(⋅ ∣ 𝜃);
Generate 𝑚 ∼ 𝑝(⋅ ∣ 𝜃, 𝐲lo) with mean 𝜇(𝜃, 𝐲lo);
if 𝑚 = 0 then

return 𝐳 = (𝐲lo);
else

for 𝑖 ∈ [1, 2, … , 𝑚] do

Simulate 𝐲hi,𝑖 ∼ 𝑓hi(⋅ ∣ 𝜃, 𝐲lo);
end for

return 𝐳 = (𝐲lo , 𝐲hi,1 , … , 𝐲hi,𝑚);
end if

end function

3.2. Accuracy of multifidelity inference

We observe that using 𝑓hi and 𝜔hi in Algorithm 1 produces an estimate of the high-fidelity approximate posterior expectation, 
𝐄𝜋𝜔hi

(𝐺 ∣ 𝑦0). We show (Section 4, Proposition 3) that the multifidelity approximate likelihood, 𝐿𝜔mf
(𝜃) = 𝐄(𝜔mf (𝜃, 𝐳) ∣ 𝜃), is equal to 

the high-fidelity approximate likelihood, 𝐿𝜔hi
(𝜃) = 𝐄(𝜔hi(𝜃, 𝐲hi) ∣ 𝜃). As a result, Algorithm 2 also produces a consistent estimate of the 

high-fidelity approximate posterior expectation, 𝐄𝜋𝜔hi
(𝐺 ∣ 𝑦0).

In the limit of infinite computational budgets, the estimate produced by multifidelity importance sampling in Algorithm 2 is 
as accurate as the estimate produced by high-fidelity importance sampling in Algorithm 1 using 𝑓hi and 𝜔hi. However, we still 
need to show that the performance of Algorithm 2 exceeds that of Algorithm 1 in the practical context of limited computational 
budgets. In Section 3.3, we introduce a method to quantify the performance of Algorithms 1 and 2 and show that the performance 
of multifidelity inference is strongly determined by the distribution of 𝑀 , the random number of high-fidelity simulations required 
at each iteration.

3.3. Comparing performance

Equation (3) gives the leading-order behaviour of the MSE for Algorithm 1 as the computational budget increases. A similar result 
applies to the output of Algorithm 2. We compare two settings: first, using Algorithm 1 with the high-fidelity model; and second, 
using Algorithm 2 with the multifidelity model. In the first setting we have the model, 𝑓hi, and likelihood-free weighting, 𝜔hi. Each 
iteration has computational cost denoted 𝐶hi, and produces a weighted Monte Carlo sample with weights 𝑤𝑖 as independent draws 
of the random variable 𝑊hi. The output of Algorithm 1 is denoted 𝐺̂hi. The MSE for Algorithm 1 has leading-order behaviour

𝐄
(
(𝐺̂hi −𝐄𝜋𝜔hi

(𝐺 ∣ 𝑦0))2
)
=
⎡⎢⎢⎢⎣
𝐄(𝐶hi)𝐄

(
𝑊 2

hi(𝐺(𝜃) −𝐄𝜋𝜔hi
(𝐺 ∣ 𝑦0))2

)
𝐄(𝑊hi)2

⎤⎥⎥⎥⎦
1

𝐶tot
+𝑂

(
1

𝐶2
tot

)
, (6)

as the total simulation budget 𝐶tot →∞. In the second setting, we similarly use Algorithm 2 with the multifidelity model 𝑓mf and 
6

likelihood-free weighting, 𝜔mf . Each iteration has computational cost denoted 𝐶mf , and produces a weighted Monte Carlo sample 
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with weights 𝑤𝑖 as independent draws of the random variable 𝑊mf . The output of Algorithm 2 is 𝐺̂mf . The MSE for Algorithm 2 has 
leading-order behaviour

𝐄
(
(𝐺̂mf −𝐄𝜋𝜔mf

(𝐺 ∣ 𝑦0))2
)
=
⎡⎢⎢⎢⎣
𝐄(𝐶mf )𝐄

(
𝑊 2

mf (𝐺(𝜃) −𝐄𝜋𝜔mf
(𝐺 ∣ 𝑦0))2

)
𝐄(𝑊mf )2

⎤⎥⎥⎥⎦
1

𝐶tot
+𝑂

(
1

𝐶2
tot

)
, (7)

as the total simulation budget 𝐶tot →∞. Thus the main task is to determine the conditions when

𝐄
(
(𝐺̂mf −𝐄𝜋𝜔mf

(𝐺 ∣ 𝑦0))2
)
< 𝐄
(
(𝐺̂hi −𝐄𝜋𝜔hi

(𝐺 ∣ 𝑦0))2
)

for the same value of 𝐶tot .

The main result of the paper (Section 4, Theorem 4) provides such conditions and enables the construction of performance 
metrics. The performance metrics Jhi and Jmf [𝜇], for Algorithm 1 and Algorithm 2, respectively, are given by

Jhi = 𝐄(𝐶hi)
⏟⏟⏟

high-fidelity cost

×𝐄
(
Δ𝑞(𝜃)2𝐄(𝜔2

hi ∣ 𝜃)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
high-fidelity variance

, (8)

Jmf [𝜇] =
(
𝐄(𝐶lo) +𝐄𝜌(𝜇(𝜃,𝐲lo)𝐄(𝐶hi ∣ 𝜃,𝐲lo))

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

multifidelity cost

×

(
𝐄
(
Δ𝑞(𝜃)2𝐄

(
𝐄(𝜔hi|𝜃,𝐲lo)2 ∣ 𝜃))+𝐄𝜌

(
Δ𝑞(𝜃)2

𝜇(𝜃,𝐲lo)
𝐄
((

𝜔hi −𝜔lo
)2 ∣ 𝜃,𝐲lo)))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
multifidelity variance

, (9)

where 𝑀 is a Poisson distributed random variable with mean 𝜇(𝜃, 𝐲lo), Δ𝑞(𝜃) =
(
𝐺(𝜃) −𝐄𝜋𝜔hi

(𝐺 ∣ 𝑦0)
)
𝜋(𝜃)∕𝑞(𝜃) is the importance 

weighted error, 𝜌(𝜃, 𝐲lo) = 𝑓lo(𝐲lo ∣ 𝜃)𝑞(𝜃) is the joint density of the low-fidelity simulator and the parameters under the importance 
distribution. Effectively both metrics are reformulations of the numerators of the leading order terms in Equation (6) and Equation (7), 
respectively.

The condition Jmf [𝜇] <Jhi is shown to be a necessary and sufficient condition for Algorithm 2 out-performing Algorithm 1 for the 
same computational budget (Theorem 4). Importantly, the performance depends explicitly on the free choice of the function 𝜇(𝜃, 𝐲lo)
that determines the conditional mean of the Poisson-distributed number of high-fidelity simulations required at each iteration. We 
observe from the first factor in Equation (9) that, when 𝜇 is smaller, the total simulation cost is less. However, the second factor 
of Equation (9) implies that as 𝜇 decreases, the variability of the likelihood-free weighting can increase without bound, which 
can severely damage the performance. Thus, Equation (9) illustrates the characteristic multifidelity trade-off between reducing 
simulation burden while also controlling the increase in sample variance. In the results that follow, we continue to assume 𝑀 is a 
Poisson distributed random variable, however, considerations for binomial and geometric distributions are given in Appendix B.

Using classical results from calculus of variations, it is possible to determine the mean function, 𝜇⋆, that achieves optimal 
performance of Algorithm 2, in the sense of minimising the functional, Jmf [𝜇]. This optimal function, 𝜇⋆, that maximises performance 
on average is given by

𝜇⋆(𝜃,𝐲lo)2 =
𝐄(𝐶lo)Δ𝑞(𝜃)2𝐄

((
𝜔hi −𝜔lo

)2 ∣ 𝜃,𝐲lo)
𝐄(𝐶hi ∣ 𝜃,𝐲lo)𝐄

(
Δ𝑞(𝜃)2𝐄

(
𝐄(𝜔hi|𝜃,𝐲lo)2 ∣ 𝜃)) . (10)

This result is derived in Section 4 (Lemma 5). Note that as 𝐄 
((

𝜔hi −𝜔lo
)2 ∣ 𝜃,𝐲lo) increases then 𝜇⋆ increases. This means that if the 

expected error between the likelihood-free weightings is large, then the high-fidelity model needs to be simulated more frequently to 
correct for this. Conversely, when 𝐄(𝐶hi ∣ 𝜃, 𝐲lo) is larger, the greater simulation time of the high-fidelity model means that 𝜇⋆ should 
be smaller, and the requirement for the most expensive simulations is reduced. Intuitively, 𝜇⋆ acts to balance the trade-off between 
controlling simulation cost and variance identified in Equation (9) above.

Of course, it need not be the case that the optimal mean function in Equation (10) leads to Jmf [𝜇] < Jhi. For this to occur we 
require (See Corollary 6),

(
𝐄(𝐶lo)
𝐄(𝐶hi)

𝐄
(
Δ𝑞(𝜃)2𝐄

(
𝐄(𝜔hi|𝜃,𝐲lo)2 ∣ 𝜃))

𝐄
(
Δ𝑞(𝜃)2𝐄(𝜔2

hi ∣ 𝜃)
) )1∕2

+𝐄𝜌

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝
Δ𝑞(𝜃)2𝐄

((
𝜔hi −𝜔lo

)2 ∣ 𝜃,𝐲lo)
𝐄
(
Δ𝑞(𝜃)2𝐄(𝜔2

hi ∣ 𝜃)
) 𝐄(𝐶hi ∣ 𝜃,𝐲lo)

𝐄(𝐶hi)

⎞⎟⎟⎟⎠
1∕2⎞⎟⎟⎟⎠ < 1. (11)

The first term in Equation (11) justifies the key assumption that the average computational cost of the low-fidelity model is as small 
as possible compared to that of the high-fidelity model, 𝐄(𝐶lo)∕𝐄(𝐶hi) ≪ 1. The second term is a measure of the total detriment 
to the performance of Algorithm 2 incurred by the inaccuracy of 𝜔lo versus 𝜔hi as a Monte Carlo estimate of 𝐿𝜔hi

, as quantified 
by 𝐄 
((

𝜔hi −𝜔lo
)2 ∣ 𝜃,𝐲lo). This condition justifies two key criteria for the success of the multifidelity method: that low-fidelity 
7

simulations are significantly cheaper than high-fidelity simulations, and that the likelihood-free weightings, 𝜔hi and 𝜔lo, agree 
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sufficiently well, on average. More detailed analysis of necessary and sufficient conditions for the existence of 𝜇⋆ is given in Section 4, 
following the proof of Corollary 6.

These key results show not only correctness of the multifidelity approach asymptotically, but also the situations in which perfor-

mance improvement is expected. The details of the analysis results can be found in the proofs of Theorem 4, Lemma 5 and Corollary 6

given in Section 4. However, these analytical results are only useful insofar as the various expectations given in Equations (8) and (9)

are known. Typically these expectations will be unknown a priori, and need to be estimated. In the following section, we describe how 
the analytical results of Section 3.3 can be used to construct a heuristic for adaptive multifidelity inference that learns a near-optimal 
mean function, 𝜇(𝜃, 𝐲lo), as simulations at each fidelity are completed.

3.4. Practical implementation

In Section 3.3, we derived the optimal mean function for the Poisson distribution of the number of high-fidelity simulations, 𝑀 , 
generated in an iteration of Algorithm 2, conditioned on the parameter value, 𝜃, and low-fidelity simulation, 𝐲lo. In this section, 
we describe a practical approach to determining a near-optimal mean function for use in multifidelity likelihood-free inference. We 
rely on two approximations, relative to the analytically optimal mean function 𝜇⋆ given in Equation (10). First, we constrain the 
optimisation of Jmf to the space of functions 𝜇D that are piecewise constant in an arbitrary, given, finite partition, D, of the global 
space of (𝜃, 𝐲lo) values. The resulting optimisation problem is therefore finite-dimensional. However, although this optimisation can 
be solved analytically, we can observe that its estimation, being based on the ratios of simulation-based Monte Carlo estimates, is 
numerically unstable. This motivates a second approximation, which is to follow a gradient-descent approach to allow the mean 
function to adaptively converge towards the optimum.

We constrain the space of mean functions, 𝜇, to be piecewise constant. Consider an arbitrary, given collection D = {𝐷𝑘 ∣ 𝑘 =
1, … , 𝐾} of 𝜌-integrable sets that partition the global space of (𝜃, 𝐲lo) values. We denote a D-piecewise constant function, parame-

terised by the vector 𝜈 = (𝜈1, … , 𝜈𝑘), as

𝜇D(𝜃,𝐲lo; 𝜈) =
𝐾∑
𝑘=1

𝜈𝑘𝐈((𝜃,𝐲lo) ∈𝐷𝑘).

Substituting this function into Equation (9), we can quantify the performance of Algorithm 2, using the mean defined by 𝜇D(𝜃, 𝐲lo; 𝜈), 
as the parameterised product

JD(𝜈) =
(
𝐄(𝐶lo) +

𝐾∑
𝑘=1

𝜈𝑘𝐶𝑘

)(
𝐄
(
Δ𝑞(𝜃)2𝐄

(
𝐄(𝜔hi|𝜃,𝐲lo)2 ∣ 𝜃))+ 𝐾∑

𝑘=1

𝑉𝑘

𝜈𝑘

)
, (12)

where, for convenience in this derivation, we denote

𝐶𝑘 = 𝐄𝜌

(
𝐄(𝐶hi|𝜃,𝐲lo)𝐈((𝜃,𝐲lo) ∈𝐷𝑘)

)
,

𝑉𝑘 = 𝐄𝜌

(
Δ𝑞(𝜃)2𝐄

((
𝜔hi −𝜔lo

)2 ∣ 𝜃,𝐲lo) 𝐈((𝜃,𝐲lo) ∈𝐷𝑘)
)
,

for 𝑘 = 1, 2, … , 𝐾 .

Just as in the case of general 𝜇∗, we can optimise the function JD(𝜈) across positive vectors, 𝜈, to obtain the result,

𝜈⋆
𝑘
=

√
𝑉𝑘𝐄(𝐶lo)

𝐶𝑘𝐄
(
Δ𝑞(𝜃)2𝐄

(
𝐄(𝜔hi|𝜃,𝐲lo)2 ∣ 𝜃)) , for 𝑘 = 1,2,… ,𝐾. (13)

This result is more convenient since all the terms on the right-hand side are constants. However, we still need to estimate these 
expectations values as they are unknown a priori. The standard approach would typically be to perform trial samples to estimate 
these values with Monte Carlo. This could be problematic in practice due to the rational form of 𝜈⋆

𝑘
which means that these estimates 

can be unstable, particularly for sets 𝐷𝑘 ∈D with small volume under 𝜌.

We now consider a conservative approach to determining values for 𝜈 that will provide stable estimates of 𝜈⋆. Rather than directly 
targeting 𝜈⋆, based on ratios of highly variable Monte Carlo estimates, we can introduce a gradient-descent approach to updating 
the vector 𝜈. Taking derivatives of JD with respect to log 𝜈𝑘 for 𝑘 = 1, … , 𝐾 gives the gradient

𝜕JD
𝜕 log 𝜈𝑘

= 𝜈𝑘𝐶𝑘

(
𝐄
(
Δ𝑞(𝜃)2𝐄

(
𝐄(𝜔hi|𝜃,𝐲lo)2 ∣ 𝜃))+ 𝐾∑

𝑗=1

𝑉𝑗

𝜈𝑗

)
−

𝑉𝑘

𝜈𝑘

(
𝐄(𝐶lo) +

𝐾∑
𝑗=1

𝐶𝑗𝜈𝑗

)
.

Thus, if we write 𝜈(𝑟) for the value of 𝜈 used in iteration 𝑟 of Algorithm 2, we intend to update to 𝜈(𝑟+1) in the next iteration using 
gradient descent, such that

log 𝜈(𝑟+1)
𝑘

= log 𝜈(𝑟)
𝑘

− 𝛿

⎡⎢⎢⎣𝜈(𝑟)𝑘
𝐶𝑘

⎛⎜⎜⎝𝐄
(
Δ𝑞(𝜃)2𝐄

(
𝐄(𝜔hi|𝜃,𝐲lo)2 ∣ 𝜃))+ 𝐾∑

𝑗=1

𝑉𝑗

𝜈
(𝑟)
𝑗

⎞⎟⎟⎠−
𝑉𝑘

𝜈
(𝑟)
𝑘

(
𝐄(𝐶lo) +

𝐾∑
𝑗=1

𝑐𝑗𝜈
(𝑟)
𝑗

)⎤⎥⎥⎦ . (14)

Note that we express this updating rule in terms of log𝜈(𝑟)
𝑘

to ensure that each 𝜈(𝑟)
𝑘

is positive, since the updates to 𝜈(𝑟) are multi-
8

plicative. As is typical of gradient-descent approaches, Equation (14) requires the specification of the step size hyperparameter, 𝛿. 
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It is straightforward to show that 𝜈⋆ is the unique positive stationary point of Equation (14). Furthermore, since each derivative 
𝜕JD∕𝜕 log 𝜈𝑘 is quadratic in the expectations the numerical instability in estimating Equation (13) as a ratio does not occur. In 
relatively under-sampled regions 𝐷𝑘 ∈ D with small 𝜌-volume, the small values of 𝑐𝑘 and 𝑉𝑘 ensure that the convergence to the 
corresponding estimated optimal value, 𝜈⋆

𝑘
, is more conservative.

We now explicitly set out the Monte Carlo estimates of unknown expectations given 𝑟-iterations of the multifidelity inference 
scheme (Algorithm 2). Firstly, the cost related expectations are estimated using

𝐄(𝐶lo) ≈ 𝐶̂
(𝑟)
lo = 1

𝑟

𝑟∑
𝑖=1

𝑐lo,𝑖, (15)

and for 𝑘 = 1, 2, … , 𝐾 ,

𝐶𝑘 ≈ 𝐶̂
(𝑟)
𝑘

= 1
𝑟

𝑟∑
𝑖=1

𝐈((𝜃𝑖,𝐲lo,𝑖) ∈𝐷𝑘)
1
𝜇𝑖

𝑚𝑖∑
𝑗=1

𝑐hi,𝑖,𝑗 , (16)

where, for iteration 𝑖, 𝑐lo,𝑖 is the observed simulation cost of each 𝐲lo,𝑖 given parameters 𝜃𝑖 drawn from 𝑞(𝜃), and 𝑐hi,𝑖,𝑗 is the observed 
simulation cost of each 𝐲hi,𝑖,𝑗 for 𝑗 = 1, … , 𝑚𝑖 with 𝑚𝑖 as a random draw from the distribution of 𝑀 having mean 𝜇𝑖. The estimators 
for the variance related terms are more complex with

𝐄
(
Δ𝑞(𝜃)2𝐄

(
𝐄(𝜔hi|𝜃,𝐲lo)2 ∣ 𝜃)) ≈ 𝑉

(𝑟)
mf =

1
𝑟

𝑟∑
𝑖=1

(
Δ(𝑟)
𝑖

𝜇𝑖

)2 ⎡⎢⎢⎣
(

𝑚𝑖∑
𝑗=1

𝜔hi,𝑖,𝑗

)2

−
𝑚𝑖∑
𝑗=1

𝜔2
hi,𝑖,𝑗

⎤⎥⎥⎦ , (17)

and for 𝑘 = 1, 2, … , 𝐾 ,

𝑉𝑘 ≈ 𝑉
(𝑟)
𝑘

= 1
𝑟

𝑟∑
𝑖=1

𝐈𝐷𝑘
(𝜃𝑖,𝐲lo,𝑖)

1
𝜇𝑖

𝑚𝑖∑
𝑗=1

(
Δ(𝑟)
𝑖

(
𝜔hi,𝑖,𝑗 −𝜔lo,𝑖

))2
, (18)

where 𝜔lo,𝑖 = 𝜔lo(𝜃𝑖, 𝐲lo,𝑖), 𝜔hi,𝑖,𝑗 = 𝜔hi(𝜃𝑖, 𝐲hi,𝑖,𝑗 ) for 𝑗 = 1, … , 𝑚𝑖, Δ
(𝑟)
𝑖

=
[
𝐺(𝜃𝑖) − 𝐺̂

(𝑟)
hi

]
𝜋(𝜃𝑖)∕𝑞(𝜃𝑖) with 𝐺̂(𝑟)

hi as the current Monte Carlo 
estimate of the target 𝐄𝜋𝜔hi

(𝐺 ∣ 𝑦0).

These estimates can then be substituted into Equation (14) to produce an updating rule for 𝜈(𝑟)
𝑘

, that is,

log 𝜈(𝑟+1)
𝑘

= log 𝜈(𝑟)
𝑘

− 𝛿

⎡⎢⎢⎣𝜈(𝑟)𝑘
𝑐
(𝑟)
𝑘

⎛⎜⎜⎝𝑉 (𝑟)
mf +

𝐾∑
𝑗=1

𝑉
(𝑟)
𝑗

𝜈
(𝑟)
𝑗

⎞⎟⎟⎠−
𝑉

(𝑟)
𝑘

𝜈
(𝑟)
𝑘

(
𝐶̂
(𝑟)
lo +

𝐾∑
𝑗=1

𝑐
(𝑟)
𝑗
𝜈
(𝑟)
𝑗

)⎤⎥⎥⎦ , (19)

leading to an adaptive multifidelity likelihood-free importance sampling scheme, as outlined in Algorithm 3.

In addition to the specification of the step size hyperparameter, 𝛿, Algorithm 3 also requires a burn-in phase, 𝑁0, to initialise 
the Monte Carlo estimates in Equation (15)–(18). The partition, D =

{
𝐷1,… ,𝐷𝐾

}
, is also an input into Algorithm 3. We defer an 

investigation of how to choose this partition to future work. For the purposes of this paper, however, we can heuristically construct 
a partition, D, by fitting a decision tree. We use the burn-in phase of Algorithm 3, over iterations 𝑖 ≤𝑁0, and regress the values of

𝜇⋆
𝑖 = |||Δ(𝑁0)

𝑖

|||
√√√√∑𝑗 (𝜔hi,𝑖,𝑗 −𝜔lo,𝑖)2∑

𝑗 𝑐hi,𝑖,𝑗
,

against features (𝜃𝑖, 𝐲lo,𝑖), using the CART algorithm [31] as implemented in DecisionTrees.jl. Note that this regression is 
motivated by the form of the true optimal mean function, 𝜇⋆, given in Equation (10). The resulting decision tree defines a partition, 
D = {𝐷1, … , 𝐷𝐾}, used to define the piecewise-constant mean function 𝜇D(𝜃, 𝑦lo; 𝜈) over 𝑖 >𝑁0.

4. Analysis of likelihood-free and multifidelity importance sampling

In this section, we detail the theoretical analysis of the general likelihood-free importance sampling scheme and the multifidelity 
schemes. The results in this section are referred to throughout Sections 2 and 3, however, notation in this section may be distinct to 
ensure the analysis is not needlessly verbose. Throughout the relation 𝑓 (𝑥) ≼ 𝑔(𝑥) is taken to mean there exists a constant, 𝑐, such that 
𝑓 (𝑥) ≤ 𝑐𝑔(𝑥) as 𝑥 →∞. Likewise 𝑓 (𝑥) ≺ 𝑔(𝑥) is taken to mean there exists a constant, 𝑐, such that 𝑓 (𝑥) < 𝑐𝑔(𝑥) as 𝑥 →∞.

The first result in Theorem 1 establishes the consistency of the general likelihood-free importance sampling scheme (Algorithm 1) 
and in doing so derives the convergence rate in MSE. For notational simplicity, we define the function Δ(𝜃) = 𝐺(𝜃) − 𝐄𝜋𝜔

(𝐺 ∣ 𝑦0) to 
recentre the approximate posterior mean.

Theorem 1. For the weighted sample values (𝜃𝑖, 𝑤𝑖) produced in each iteration of Algorithm 1, let 𝑊 denote the random value of the weight 
9

𝑤𝑖, and let 𝜃 denote the random value of 𝜃𝑖. The mean squared error (MSE) of the estimator, 𝐺̂, is given to leading order by
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Algorithm 3 Adaptive multifidelity likelihood-free importance sampling.

Require: Prior, 𝜋; importance distribution, 𝑞; likelihood-free weightings, 𝜔hi and 𝜔lo ; models 𝑓hi(⋅ ∣ 𝜃) and 𝑓lo(⋅ ∣ 𝜃); partition D = {𝐷1 , … , 𝐷𝐾} of (𝜃, 𝐲lo) space; 
adaptation rate, 𝛿; burn-in period, 𝑁0 ; target estimated function, 𝐺.

Initialise log 𝜈(1)
𝑘

= 0 for 𝑘 = 1, … , 𝐾 .

for 𝑖 ∈ [1, 2, … , 𝑁] do

Sample 𝜃𝑖 ∼ 𝑞(⋅);
Generate 𝐳𝑖 ∼ 𝜙(⋅ ∣ 𝜃𝑖) from MF-SIMULATE(𝜃𝑖, 𝜈(𝑖));
For 𝜔mf in Equation (4), calculate the weight 𝑤𝑖 =𝑤mf (𝜃, 𝐳𝑖) =

𝜋(𝜃𝑖)
𝑞(𝜃𝑖)

𝜔mf (𝜃𝑖, 𝐳𝑖);
if 𝑖 >𝑁0 then

Generate 𝜈(𝑖+1) from UPDATE-NU(𝜈(𝑖));

else

Set 𝜈(𝑖+1) = 𝜈(𝑖) ;

end if

end for

Estimate expectation using weighted sum, 𝐺̂mf =
∑𝑁

𝑖=1 𝑤𝑖𝐺(𝜃𝑖)∑𝑁

𝑗=1 𝑤𝑗

.

function MF-SIMULATE(𝜃, 𝜈)

Simulate 𝐲lo ∼ 𝑓lo(⋅ ∣ 𝜃);
Find 𝑘 such that (𝜃, 𝐲lo) ∈𝐷𝑘 ;

Generate 𝑚 ∼ Poi(𝜈𝑘);
for 𝑖 = 1, … , 𝑚 do

Simulate 𝐲hi,𝑖 ∼ 𝑓hi(⋅ ∣ 𝜃, 𝐲lo);
end for

return 𝐳 = (𝐲lo , 𝑚, 𝐲hi,1 , … , 𝐲hi,𝑚)
end function

function UPDATE-NU(𝜈1, … , 𝜈𝐾 )

Update Monte Carlo estimates defined in Equation (15)–(18);

for 𝑘 = 1, … , 𝐾 do

Increment log 𝜈𝑘 according to Equation (19);

end for

return 𝜈 = (𝜈1 , … , 𝜈𝑘)
end function

𝐄
(
(𝐺̂ −𝐄𝜋𝜔

(𝐺 ∣ 𝑦0))2
)
≼

[
𝐄
(
𝑊 2Δ2)
𝐄(𝑊 )2

]
1
𝑁

,

as 𝑁 →∞. Thus, 𝐺̂ is a consistent estimator of 𝐄𝜋𝜔
(𝐺 ∣ 𝑦0).

Proof. The Monte Carlo estimate produced by Algorithm 1, 𝐺̂ = 𝑅∕𝑆, is the ratio of two random variables: the weighted sum, 
𝑅 =∑𝑁

𝑖=1𝑤(𝜃𝑖, 𝐲𝑖)𝐺(𝜃𝑖), and the normalising sum, 𝑆 =
∑𝑁

𝑖=1𝑤(𝜃𝑖, 𝐲𝑖). We write the function Φ(𝑟, 𝑠) = (𝑟∕𝑠 −𝐄𝜋𝜔
(𝐺 ∣ 𝑦0))2, and note that 

the MSE is the expected value of the function (𝐺̂ − 𝐄𝜋𝜔
(𝐺 ∣ 𝑦0))2 = Φ(𝑅, 𝑆). Using the delta method, we take expectations of the 

second-order Taylor expansion of Φ(𝑅, 𝑆) about (𝜇𝑅, 𝜇𝑆 ) = (𝐄(𝑅), 𝐄(𝑆)), to give

𝐄 (Φ(𝑅,𝑆)) = Φ(𝜇𝑅,𝜇𝑆 ) +
1
𝜇2
𝑆

[
Var(𝑅) +

(
2𝐄𝜋𝜔

(𝐺 ∣ 𝑦0) −
4𝜇𝑅
𝜇𝑆

)
Cov(𝑅,𝑆) +

(
3𝜇𝑅 − 2𝐄𝜋𝜔

(𝐺 ∣ 𝑦0)𝜇𝑆
𝜇2
𝑆

)
𝜇𝑅Var(𝑆)

]

+𝑂

⎛⎜⎜⎜⎝
𝐄
(((

𝑅− 𝜇𝑅
)
+
(
𝑆 − 𝜇𝑆

))3)
𝜇3
𝑆

⎞⎟⎟⎟⎠ .
Taking expectations with respect to 𝑁 independent draws of (𝜃, 𝐲) with density 𝑓 (𝐲 ∣ 𝜃)𝑞(𝜃), it is straightforward to write

𝜇𝑅 = 𝐄(𝑅) =𝑁𝐄(𝑊𝐺) =𝑁𝑍𝜔𝐄𝜋𝜔
(𝐺 ∣ 𝑦0),

𝜇𝑆 = 𝐄(𝑆) =𝑁𝐄(𝑊 ) =𝑁𝑍𝜔,

where we recall that 𝐄(𝑊 ) = 𝑍𝜔 = ∫ 𝐿𝜔(𝜃)𝜋(𝜃) d𝜃 is the normalising constant in Section 2.1. We substitute these expectations into 
the Taylor expansion of 𝐄((𝐺̂−𝐄𝜋𝜔

(𝐺 ∣ 𝑦0))2), noting that the leading-order term, Φ(𝜇𝑅, 𝜇𝑆 ), is zero. Thus, we can write the dominant 
10

behaviour of the MSE as
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𝐄
(
(𝐺̂ −𝐄𝜋𝜔

(𝐺 ∣ 𝑦0))2
)
= 1

𝑁2𝑍2
𝜔

[
Var(𝑅) − 2𝐄𝜋𝜔

(𝐺 ∣ 𝑦0)Cov(𝑅,𝑆) +𝐄𝜋𝜔
(𝐺 ∣ 𝑦0)2Var(𝑆)

]
+𝑂

⎛⎜⎜⎜⎝
𝐄
(((

𝑅− 𝜇𝑅
)
+
(
𝑆 − 𝜇𝑆

))3)
𝑁3

⎞⎟⎟⎟⎠
= 1

𝑁2𝑍2
𝜔

Var(𝑅−𝐄𝜋𝜔
(𝐺 ∣ 𝑦0)𝑆) +𝑂

⎛⎜⎜⎜⎝
𝐄
(((

𝑅− 𝜇𝑅
)
+
(
𝑆 − 𝜇𝑆

))3)
𝑁3

⎞⎟⎟⎟⎠ ,
as 𝑁 → ∞. Substituting into this expression the definitions of 𝑅 and 𝑆 as summations of 𝑁 independent identically distributed 
random variables, we have

𝐄((𝐺̂ −𝐄𝜋𝜔
(𝐺 ∣ 𝑦0))2) =

1
𝑁2𝑍2

𝜔

𝑁Var(𝑊 Δ) +𝑂
(
𝑁

𝑁3

)
,

and Equation (2) follows, on noting that 𝐄(𝑊 Δ) = 0 and that 𝐄(𝑊 ) =𝑍𝜔. □

The consistency and MSE convergence rate in terms of sample size 𝑁 is trivially recast in Corollary 2 in terms of a computational 
budget 𝐶tot . This form is particularly important in the context of performance comparison with the multifidelity schemes as presented 
later.

Corollary 2. Let the computational cost of each iteration of Algorithm 1 be denoted by the random variable 𝐶 . The leading order behaviour 
of the MSE of 𝐺̂ as an estimate of 𝐄𝜋𝜔

(𝐺 ∣ 𝑦0) is

𝐄
(
(𝐺̂ −𝐄𝜋𝜔

(𝐺 ∣ 𝑦0))2
)
≼

[
𝐄(𝐶)𝐄

(
𝑊 2Δ2)

𝐄(𝑊 )2

]
1

𝐶tot
,

as 𝐶tot →∞.

Proof. As the given computational budget increases, 𝐶tot →∞, the Monte Carlo sample size that can be produced with that budget 
increases on the order of 𝑁 ∼ 𝐶tot∕𝐄(𝐶). On substituting this expression into Equation (2), the result follows. □

Given the multifidelity scheme in Algorithm 2 is also a special case of Algorithm 1, we know via Theorem 1 that the estimator is 
consistent with respect to 𝐄𝜋𝜔mf

(𝐺 ∣ 𝑦0). Proposition 3 further establishes that in the multifidelity case we also have 𝐄𝜋𝜔mf
(𝐺 ∣ 𝑦0) =

𝐄𝜋𝜔hi
(𝐺 ∣ 𝑦0).

Proposition 3. The multifidelity approximation to the likelihood, 𝐿mf (𝜃) = 𝐄(𝜔mf ∣ 𝜃), is equal to the high-fidelity approximation to the 
likelihood, 𝐿hi(𝜃) = 𝐄(𝜔hi ∣ 𝜃). Therefore, the estimate 𝐺̂mf produced by Algorithm 2 is a consistent estimate of the high-fidelity approximate 
posterior expectation, 𝐄𝜋𝜔hi

(𝐺 ∣ 𝑦0).

Proof. We take the expectation of 𝜔mf (Equation (4)) conditional on (𝜃, 𝐲lo, 𝑚), to find

𝐄(𝜔mf ∣ 𝜃,𝐲lo,𝑀 =𝑚) =
(
1 − 𝑚

𝜇

)
𝜔lo(𝜃,𝐲lo) +

𝑚

𝜇
𝐄(𝜔hi ∣ 𝜃,𝐲lo).

Further taking expectations over the random integer 𝑀 , which has conditional expected value 𝜇(𝜃, 𝐲lo), gives

𝐄(𝜔mf ∣ 𝜃,𝐲lo) = 𝐄(𝜔hi ∣ 𝜃,𝐲lo).

Further taking expectations with respect to 𝐲lo, it follows that 𝐿𝜔mf
(𝜃) =𝐿𝜔hi

(𝜃). Therefore, the likelihood-free approximate posteriors, 
𝜋𝜔mf

= 𝜋𝜔hi
, are equal and thus 𝐺̂mf is a consistent estimate of 𝐄𝜋𝜔mf

(𝐺 ∣ 𝑦0) = 𝐄𝜋𝜔hi
(𝐺 ∣ 𝑦0), as required. □

We now arrive at the most important result in this work as it determines the necessary and sufficient conditions for which the 
multifidelity scheme out-performs direct likelihood-free importance sampling targeting the high-fidelity weighting. For concreteness, 
Theorem 4 assumes that the random variable 𝑀 determining the required number of high-fidelity simulations in each iteration 
of Algorithm 2, is Poisson distributed, conditional on the parameter value and low-fidelity simulation output. However, it is important 
to note that only minor alterations to the form of the performance metrics arise through other parametric assumptions on 𝑀 . Binomial 
and Geometric distribution alternatives are explored in Appendix B. We show that, for a given multifidelity model and likelihood-free 
weightings, the mean function, 𝜇, for 𝑀 determines the performance of Algorithm 2 relative to Algorithm 1.

Theorem 4. Assume that the random number of high-fidelity simulations, 𝑀 , required in each iteration of Algorithm 2 is Poisson distributed 
with conditional mean 𝜇(𝜃, 𝐲lo). Let 𝑐hi(𝜃) [respectively, 𝑐lo(𝜃) and 𝑐hi(𝜃, 𝐲lo)] be the expected time taken to simulate 𝐲hi ∼ 𝑓hi(⋅ ∣ 𝜃) [respec-
11

tively, to simulate 𝐲lo ∼ 𝑓lo(⋅ ∣ 𝜃) and to produce the coupled high-fidelity simulation 𝐲hi ∼ 𝑓hi(⋅ ∣ 𝜃, 𝐲lo)]. Further, assume that the computational 
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cost of each iteration of Algorithm 1 and Algorithm 2 can be approximated by the dominant cost of simulation alone, neglecting the costs of 
the other calculations.

As 𝐶tot →∞, the MSE of the high-fidelity likelihood-free importance sampling estimator, 𝐺̂𝜔hi
, asymptotically exceeds that of the multifi-

delity importance sampling estimator, 𝐺̂𝜔mf
, that is,

𝐄
(
(𝐺̂𝜔mf

−𝐄𝜋𝜔hi
(𝐺 ∣ 𝑦0))2

)
≺ 𝐄
(
(𝐺̂𝜔hi

−𝐄𝜋𝜔hi
(𝐺 ∣ 𝑦0))2

)
,

if and only if Jmf [𝜇] <Jhi, where

Jhi = 𝑐hi𝑉hi, (20a)

Jmf [𝜇] =
(
𝑐lo +𝐄𝜌

(
𝜇(𝜃,𝐲lo)𝑐hi(𝜃,𝐲lo)

))
×
(
𝑉mf +𝐄𝜌

(
Δ𝑞(𝜃)2

𝜂(𝜃,𝐲lo)
𝜇(𝜃,𝐲lo)

))
, (20b)

with constants

𝑐hi = ∫ 𝑐hi(𝜃) 𝑞(𝜃)d𝜃, 𝑉hi = ∫ Δ𝑞(𝜃)2𝐄(𝜔2
hi ∣ 𝜃) 𝑞(𝜃)d𝜃, (20c)

𝑐lo = ∫ 𝑐lo(𝜃) 𝑞(𝜃)d𝜃, 𝑉mf = ∫ Δ𝑞(𝜃)2𝐄(𝜆2hi ∣ 𝜃) 𝑞(𝜃)d𝜃, (20d)

and functions

Δ𝑞(𝜃) =
𝜋(𝜃)
𝑞(𝜃)
(
𝐺(𝜃) −𝐺hi

)
, 𝜂(𝜃,𝐲lo) = 𝐄

((
𝜔hi −𝜔lo

)2 ∣ 𝜃,𝐲lo) , 𝜆hi(𝜃,𝐲lo) = 𝐄(𝜔hi ∣ 𝜃,𝐲lo), (20e)

and the joint density

𝜌(𝜃,𝐲lo) = 𝑓lo(𝐲lo ∣ 𝜃)𝑞(𝜃). (20f)

Proof. The leading order performance of each of Algorithm 1 and Algorithm 2 is given in terms of increasing computational budget, 
𝐶tot , in Equation (6) and Equation (7), respectively. For the performance of Algorithm 2 to exceed that of Algorithm 1, we compare 
the leading order coefficients from Equations (6) and (7), requiring

𝐄(𝐶mf )𝐄(𝑤2
mfΔ

2)

𝐄(𝑤mf )2
<

𝐄(𝐶hi)𝐄(𝑤2
hiΔ

2)

𝐄(𝑤hi)2
. (21)

We note that 𝐄(𝑤mf ∣ 𝜃) = 𝜋(𝜃)𝐿𝜔mf
(𝜃)∕𝑞(𝜃) and 𝐄(𝑤hi ∣ 𝜃) = 𝜋(𝜃)𝐿𝜔hi

(𝜃)∕𝑞(𝜃). Since 𝐿mf = 𝐿hi, as shown in Proposition 3, the denomi-

nators in Equation (21) are therefore equal. Thus,

Jmf = 𝐄(𝐶mf )𝐄(𝑤2
mfΔ

2) < 𝐄(𝐶hi)𝐄(𝑤2
hiΔ

2) =Jhi,

is the condition for Algorithm 2 to outperform Algorithm 1.

Taking the right-hand side of this inequality first, clearly the expected simulation time is 𝐄(𝐶hi) = 𝑐hi, for the constant 𝑐hi defined 
in Equation (20c). Similarly, we can write

𝐄(𝑤2
hiΔ

2) = ∫
(
𝜋(𝜃)
𝑞(𝜃)

Δ(𝜃)
)2 [

∫ 𝜔hi(𝜃,𝐲hi)2𝑓hi(𝐲hi ∣ 𝜃)d𝐲hi
]
𝑞(𝜃)d𝜃 = 𝑉hi,

as given in Equation (20c). Thus, Jhi = 𝑐hi𝑉hi.

For the left-hand side of the performance inequality, we take each expectation in Jmf in turn. We first note that the expected 
iteration cost of Algorithm 2, 𝐄(𝐶mf ), is the sum of the expected cost of a single low-fidelity simulation, and the expected cost of 𝑀
high-fidelity simulations. By definition, the expected cost of a single low-fidelity simulation 𝐲lo ∼ 𝑓lo(⋅ ∣ 𝜃) across 𝜃 ∼ 𝑞(⋅) is given by 
𝑐lo. Thus the remaining cost, 𝐄(𝛿𝐶mf ) = 𝐄(𝐶mf ) − 𝑐lo, is the expected cost of 𝑀 high-fidelity simulations. Conditioning on 𝜃, 𝐲lo and 
𝑀 =𝑚, the expected remaining cost is, by definition,

𝐄(𝛿𝐶mf ∣ 𝜃,𝐲lo,𝑀 =𝑚) =𝑚𝑐hi(𝜃,𝐲lo).

Taking expectations over the conditional distribution 𝑀 ∼ Poi(𝜇(𝜃, 𝐲lo)), we have

𝐄(𝛿𝐶mf ∣ 𝜃,𝐲lo) = 𝜇(𝜃,𝐲lo)𝑐hi(𝜃,𝐲lo).

Finally, integrating this expression over the density 𝜌 in Equation (20f) gives the first factor of Equation (9).

It remains to show that

𝜂(𝜃,𝐲lo)
12

𝐄(𝑤2
mfΔ

2) = 𝑉mf +∬ Δ𝑞(𝜃)2 𝜇(𝜃,𝐲lo)
𝜌(𝜃,𝐲lo)d𝜃d𝐲lo.
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We first condition on 𝜃, 𝐲lo and 𝑀 =𝑚, to write

𝐄(𝑤2
mfΔ

2 ∣ 𝜃,𝐲lo,𝑚) = Δ2
𝑞𝐄(𝜔

2
mf ∣ 𝜃,𝐲lo,𝑚)

= Δ2
𝑞

[
𝜔2
lo +

2
𝜇
𝜔lo𝐄
(
𝐷𝑚 ∣ 𝜃,𝐲lo

)
+ 1

𝜇2 𝐄
(
𝐷2

𝑚 ∣ 𝜃,𝐲lo
)]

,

for the random variable 𝐷𝑚 =
∑𝑚

𝑖=1
(
𝜔hi,𝑖 −𝜔lo

)
. It is straightforward to show that

𝐄(𝐷𝑚 ∣ 𝜃,𝐲lo) =𝑚𝐄(𝜔hi ∣ 𝜃,𝐲lo) −𝑚𝜔lo,

𝐄(𝐷2
𝑚 ∣ 𝜃,𝐲lo) =𝑚𝐄

(
(𝜔hi −𝜔lo)2 ∣ 𝜃,𝐲lo

)
+ (𝑚2 −𝑚)𝐄(𝜔hi −𝜔lo ∣ 𝜃,𝐲lo)2,

where we exploit the conditional independence of the high-fidelity simulations 𝐲hi,𝑖 and 𝐲hi,𝑗 , for 𝑖 ≠ 𝑗. On substitution of these 
conditional expectations, we then rearrange to write

𝐄(𝑤2
mfΔ

2 ∣ 𝜃,𝐲lo,𝑚) = Δ2
𝑞

[(
1 − 2𝑚

𝜇

)
𝜔2
lo +

2𝑚
𝜇

𝜔lo𝜆hi +
𝑚

𝜇2 Var(𝜔hi −𝜔lo ∣ 𝜃,𝐲lo) +
(
𝑚(𝜆hi −𝜔lo)

𝜇

)2]
,

where we write the conditional expectation 𝜆hi(𝜃, 𝐲lo) = 𝐄(𝜔hi ∣ 𝜃, 𝐲lo). At this point we can take expectations over 𝑀 and rearrange to 
give

𝐄(𝑤2
mfΔ

2 ∣ 𝜃,𝐲lo) = Δ2
𝑞

[
2𝜔lo𝜆hi −𝜔2

lo +
1
𝜇
Var(𝜔hi −𝜔lo ∣ 𝜃,𝐲lo) +

(Var(𝑀 ∣ 𝜃,𝐲lo) + 𝜇2)(𝜆hi −𝜔lo)2

𝜇2

]
=Δ2

𝑞

[
𝜆2hi +

1
𝜇

(
Var(𝜔hi −𝜔lo ∣ 𝜃,𝐲lo) +

Var(𝑀 ∣ 𝜃,𝐲lo)
𝜇

(
𝐄(𝜔hi −𝜔lo ∣ 𝜃,𝐲lo)

)2)]
. (22)

Here, we can use the assumption that 𝑀 conditioned on 𝜃 and 𝐲lo is Poisson distributed, noting that the statement of Theorem 4 can 
be adapted for other conditional distributions of 𝑀 with different conditional variance functions. Under the Poisson assumption, we 
can substitute Var(𝑀 ∣ 𝜃, 𝐲lo) = 𝜇(𝜃, 𝐲lo) to give

𝐄(𝑤2
mfΔ

2 ∣ 𝜃,𝐲lo) = Δ2
𝑞

⎡⎢⎢⎢⎣𝜆
2
hi +

𝐄
((

𝜔hi −𝜔lo
)2 ∣ 𝜃,𝐲lo)

𝜇(𝜃,𝐲lo)

⎤⎥⎥⎥⎦ .
Finally, we take expectations with respect to the probability density 𝜌 in Equation (20f), and the product in Equation (9) follows. □

Given the main result from Theorem 4 on the conditions for improvements using multifidelity importance sampling, the following 
results (Lemma 5 and Corollary 6) demonstrate the form and existence of the mean function, 𝜇(𝜃, 𝐲lo), such that the conditions are 
satisfied.

Lemma 5. The functional Jmf [𝜇] quantifying the performance of Algorithm 2 is optimised by the function 𝜇⋆, where

𝜇⋆(𝜃,𝐲lo)2 = Δ𝑞(𝜃)2
[
𝜂(𝜃,𝐲lo)∕𝑉mf
𝑐hi(𝜃,𝐲lo)∕𝑐lo

]
. (23)

Proof. We write the functional Jmf [𝜇] = C[𝜇]V[𝜇] in Equation (9) as the product of functionals

C[𝜇] = 𝑐lo +∬ 𝜇𝑐hi 𝜌d𝜃d𝐲lo, (24a)

V[𝜇] = 𝑉mf +∬ Δ2
𝑞

𝜂

𝜇
𝜌d𝜃d𝐲lo. (24b)

Standard ‘product rule’ results from calculus of variations allow us to write the functional derivative of Jmf with respect to 𝜇 as

𝛿Jmf
𝛿𝜇

=V[𝜇] 𝛿C
𝛿𝜇

+C[𝜇] 𝛿V
𝛿𝜇

=V[𝜇]𝑐hi𝜌− C[𝜇]
Δ2
𝑞𝜂𝜌

𝜇2 .

Setting this functional derivative to zero, the optimal function, 𝜇⋆ , satisfies

𝜇⋆(𝜃,𝐲lo)2 =
C[𝜇⋆]
V[𝜇⋆]

Δ𝑞(𝜃)2𝜂(𝜃,𝐲lo)
𝑐hi(𝜃,𝐲lo)

. (25)
13

The result in Equation (10) follows on showing that 𝐶[𝜇⋆]∕𝑉 [𝜇⋆] = 𝑐lo∕𝑉mf .
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On substituting Equation (25) into Equation (24) we find

C[𝜇⋆] = 𝑐lo +

√
C[𝜇⋆]
V[𝜇⋆] ∬

√
Δ2
𝑞𝜂𝑐hi 𝜌d𝜃d𝐲lo,

V[𝜇⋆] = 𝑉mf +

√
V[𝜇⋆]
C[𝜇⋆] ∬

√
Δ2
𝑞𝜂𝑐hi 𝜌d𝜃d𝐲lo,

from which it follows that√
V[𝜇⋆]
C[𝜇⋆]

𝑐lo =

√
C[𝜇⋆]
V[𝜇⋆]

𝑉mf =
√
C[𝜇⋆]V[𝜇⋆] −∬

√
Δ2
𝑞𝜂𝑐hi 𝜌d𝜃d𝐲lo.

Multiplying this equation by 
√
C[𝜇⋆]V[𝜇⋆], we have V[𝜇⋆]𝑐lo = C[𝜇⋆]𝑉mf , and thus Equation (10) follows from Equation (25). □

Corollary 6. There exists a mean function, 𝜇, such that the performance of Algorithm 2 exceeds the performance of Algorithm 1, if and only 
if √

𝑐lo
𝑐hi

𝑉mf
𝑉hi

+∬
√

Δ𝑞(𝜃)2𝜂(𝜃,𝐲lo)
𝑉hi

√
𝑐hi(𝜃,𝐲lo)

𝑐hi
𝜌(𝜃,𝐲lo)d𝜃d𝐲lo < 1. (26)

Proof. On substituting Equation (23) into Equation (24), we find that the condition J⋆
mf =Jmf [𝜇⋆] <Jhi = 𝑐hi𝑉hi is equivalent to(√

𝑐lo𝑉mf +∬
√

Δ𝑞(𝜃)2𝜂(𝜃,𝐲lo)𝑐hi(𝜃,𝐲lo) 𝜌(𝜃,𝐲lo)d𝜃d𝐲lo
)2

< 𝑐hi𝑉hi.

A simple rearrangement of this inequality gives the inequality in Equation (26). □

To interpret the condition in Equation (26), we note that the first term is determined by (a) our assumption of a significant 
reduction in simulation burden of the low-fidelity model over the high-fidelity model, 𝑐lo < 𝑐hi, and (b) the ratio of the two integrals,

𝑉mf
𝑉hi

=
∫ Δ𝑞(𝜃)2𝐄(𝐄(𝜔hi ∣ 𝜃,𝐲lo)2 ∣ 𝜃)𝑞(𝜃) d𝜃

∫ Δ𝑞(𝜃)2𝐄(𝜔2
hi ∣ 𝜃)𝑞(𝜃) d𝜃

.

Exploiting the law of total variance, we note that

𝐄(𝜔2
hi ∣ 𝜃) = Var(𝜔hi ∣ 𝜃) +𝐿𝜔hi

(𝜃)2,

𝐄(𝐄(𝜔hi ∣ 𝜃,𝐲lo)2 ∣ 𝜃) = Var(𝐄(𝜔hi ∣ 𝜃,𝐲lo) ∣ 𝜃) +𝐿𝜔hi
(𝜃)2

= 𝐄(𝜔2
hi ∣ 𝜃) −𝐄(Var(𝜔hi ∣ 𝜃,𝐲lo) ∣ 𝜃).

These equalities imply that

𝐄(𝜔hi ∣ 𝜃)2 ≤ 𝐄(𝐄(𝜔hi ∣ 𝜃,𝐲lo)2 ∣ 𝜃) ≤ 𝐄(𝜔2
hi ∣ 𝜃),

where the lower bound is achieved for 𝐲hi independent of 𝐲lo, while the upper bound would be achieved if 𝐲hi were a deterministic 
function of 𝐲lo. In particular, 𝑉mf∕𝑉hi ≤ 1, and so the first term of Equation (26) is small whenever the low-fidelity model provides 
significant computational savings versus the high-fidelity model.

The second term in Equation (26) quantifies the detriment to the performance of Algorithm 2 that arises from the inaccuracy 
of 𝜔lo as an estimate of 𝜔hi. The function 𝜂(𝜃, 𝐲lo) = 𝐄((𝜔hi − 𝜔lo)2 ∣ 𝜃, 𝐲lo) is integrated across the density 𝜌, weighted by the relative 
computational cost of the high-fidelity simulation, 𝑐hi(𝜃, 𝐲lo)∕𝑐hi, and by the contribution of 𝐺(𝜃) to the variance of the estimated 
posterior expectation of 𝐺. We can conclude that the multifidelity approach requires that the low-fidelity model is accurate in the 
regions of parameter space where high-fidelity simulations are particularly expensive.

To summarise: if (a) the ratio between average low-fidelity simulation costs and high-fidelity simulation costs is suitably small, 
and (b) the average disagreement between likelihood-free weightings, as measured by 𝜂, is suitably small, then Equation (26) will be 
satisfied and thus a mean function, 𝜇⋆, exists such that Algorithm 2 is more efficient than Algorithm 1. The optimisation goal of the 
adaptive scheme proposed in Algorithm 3 optimally tunes the mean function 𝜇(𝜃, 𝐲lo) to maximise the computational benefit.

5. Example: biochemical reaction network

The following example considers the stochastic simulation of a biochemical reaction motif. Readers unfamiliar with these tech-

niques are referred to detailed expositions of by Schnoerr et al. [32], Warne et al. [33] and Erban and Chapman [34]. We model 
14

the conversion (over time 𝑡 ≥ 0) of substrate molecules, labelled S, into molecules of a product, P. The conversion of S into P
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Fig. 1. Effect of multifidelity coupling. (a) Example stochastic trajectories from the high and low-fidelity enzyme kinetics models in Equations (27) and (30) for 
parameters 𝜃 = (𝑘1 , 𝑘2 , 𝑘3) = (50, 50, 1), compared with data used for inference. For one low-fidelity simulation, we generate five uncoupled simulations and five coupled 
simulations. (b) Ten-dimensional data summarising simulated trajectories in (a). Black represents observed data, 𝑦0 ; the single low-fidelity simulation 𝑦lo ∼ 𝑓lo(⋅ ∣ 𝜃) is 
in blue; five uncoupled simulations 𝑦hi ∼ 𝑓hi(⋅ ∣ 𝜃) are in orange; five coupled simulations 𝑦hi ∼ 𝑓hi(⋅ ∣ 𝜃, 𝑦lo) are in green (almost coincident). (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)

is catalysed by the presence of enzyme molecules, E, which bind with S to form a substrate-enzyme complex, labelled C. After 
non-dimensionalising units of time and volume, this network motif is represented by three reactions,

S + E
𝑘1

←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←
𝑘2

C
𝑘3

←←←←←←←←←←←←←←←←←→ P + E, (27a)

parameterised by the vector 𝜃 = (𝑘1, 𝑘2, 𝑘3) of positive parameters, 𝑘1, 𝑘2, and 𝑘3, and three propensity functions,

𝑣1(𝑡) = 𝑘1𝑆(𝑡)𝐸(𝑡), (27b)

𝑣2(𝑡) = 𝑘2𝐶(𝑡), (27c)

𝑣3(𝑡) = 𝑘3𝐶(𝑡), (27d)

where the integer-valued variables 𝑆(𝑡), 𝐸(𝑡), 𝐶(𝑡) and 𝑃 (𝑡) represent the molecule numbers at time 𝑡 > 0. The stoichiometric matrix 
for this model is

ℎ =

⎡⎢⎢⎢⎢⎣
−1 1 0
−1 1 0
1 −1 −1
0 0 1

⎤⎥⎥⎥⎥⎦
. (28)

At 𝑡 = 0, we assume there are no complex or product molecules, but set positive integer numbers 𝑆0 = 100 and 𝐸0 = 5 of substrate and 
enzyme molecules, respectively. Given the fixed initial conditions, the parameters in 𝜃 are sufficient to specify the dynamics of the 
model in Equation (27a). The model is stochastic, and induces a distribution, which we denote 𝑓 (⋅ ∣ 𝜃), on the space of trajectories 
𝑥 ∶ 𝑡 ↦ (𝑆(𝑡), 𝐸(𝑡), 𝐶(𝑡), 𝑃 (𝑡)) of molecule numbers in ℕ4 over time. Such trajectories evolve according to the discrete-state Markov 
process

𝑥𝑡 = 𝑥0 +
3∑

𝑗=1
P𝑗
⎛⎜⎜⎝

𝑡

∫
0

𝜈𝑗 (𝑠)d𝑠
⎞⎟⎟⎠ℎ∗,𝑗 , (29)

where P1(⋅), P3(⋅), and P3(⋅), are inhomogeneous Poisson processes.

For the purposes of this example, the observed data (Fig. 1) is given by

𝑦0 = (𝑦1,… , 𝑦10) = (1.73,3.80,5.95,8.10,11.17,12.92,15.50,17.75,20.17,23.67),

where the 𝑛-th observation represents the hitting time for the product molecule levels exceeding 10𝑛, that is, 𝑦𝑛 = 𝑡 such that 
𝑃 (𝑡) = 10𝑛. We set a prior 𝜋(𝜃) on the vector 𝜃, equal to a product of independent uniform distributions such that 𝑘1, 𝑘2 ∼ U(10, 100)
and 𝑘3 ∼ U(0.1, 10). We seek the posterior distribution 𝜋(𝜃 ∣ 𝑦0) using the likelihood, denoted L(𝜃) = 𝑓 (𝑦0 ∣ 𝜃), focusing on the pos-

terior expectation of the function 𝐺(𝜃) = 𝑘3, denoting the rate of conversion of substrate–enzyme complex to product. All code for 
this example is available at github.com/tpprescott/mf-lf, using stochastic simulations implemented by github.com/tp-
prescott/ReactionNetworks.jl. We assume that we cannot calculate the likelihood function, L(𝜃) = 𝑓 (𝑦0 ∣ 𝜃), and therefore 
15

resort to our likelihood-free framework.

https://github.com/tpprescott/mf-lf
https://github.com/tpprescott/ReactionNetworks.jl
https://github.com/tpprescott/ReactionNetworks.jl
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5.1. Multifidelity approximate Bayesian computation

Here we formulate the weighting function to implement ABC importance sampling to compare with an equivalent ABC imple-

mentation of adaptive multifidelity importance sampling. See Appendix A for the general formulation of ABC within our framework.

5.1.1. ABC importance sampling

Given 𝜃, the model in Equation (27) can be exactly simulated using the Gillespie stochastic simulation algorithm, to produce 
draws 𝑦 ∼ 𝑓 (⋅ ∣ 𝜃) from the exact model [26,34,35]. We will use the ABC likelihood-free weighting with threshold value 𝜖 = 5 on the 
Euclidean distance of the simulation from 𝑦0, such that

𝜔(𝜃, 𝑦) = 𝟏(‖𝑦− 𝑦0‖2 < 5),

to define the likelihood-free approximation to the posterior, 𝐿ABC(𝜃) = 𝐄(𝜔 ∣ 𝜃). For simplicity of demonstration we set the importance 
distribution to be equal to the prior, that is, 𝑞 = 𝜋. In this instance, the likelihood-free weighting in Algorithm 1 reduces to a rejection 
sampling approach, setting the importance distribution equal to the prior. Furthermore, configuring Algorithm 1 and Algorithm 3 to 
use the same proposal ensures any performance improvements are due to the multifidelity scheme rather than tuning of proposals.

5.1.2. Multifidelity ABC

The exact Gillespie stochastic simulation algorithm can incur significant computational burden. In the specific case of the network 
in Equation (27), if the reaction rates 𝑘1 and 𝑘2 are large relative to 𝑘3, there are large numbers of binding/unbinding reactions 
S + E←←←←←←←←←←→ C that occur in any simulation. In comparison, the reaction C ←←←←←←←←←←←←←←←←←→ P + E can only fire exactly 100 times. Michaelis–Menten 
dynamics exploit this scale separation to approximate the enzyme kinetics network motif. We approximate the conversion of substrate 
into product as a single reaction step,

S
𝑘MM(𝑡)
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P, (30a)

where the time-varying rate of conversion, 𝑘MM(𝑡), given by

𝑘MM(𝑡) =
𝑘3 min(𝑆(𝑡),𝐸0)
𝐾MM +𝑆(𝑡)

, (30b)

𝐾MM =
𝑘2 + 𝑘3

𝑘1
, (30c)

induces the propensity function 𝑣MM(𝑡) = 𝑘MM(𝑡)𝑆(𝑡). We assume initial conditions of 𝑆(0) = 𝑆0 = 100 and 𝑃 (0) = 0, and fix the parame-

ter 𝐸0 = 5. Thus, the parameter vector, 𝜃 = (𝑘1, 𝑘2, 𝑘3), again fully determines the dynamics of the low-fidelity model in Equation (30). 
We write 𝑦lo ∼ 𝑓lo(⋅ ∣ 𝜃) as the conditional probability density for the Gillespie simulation of the approximated model in Equation (30), 
where 𝑦lo is the vector of ten simulated time points 𝑦lo,𝑛 at which 10𝑛 product molecules have been produced.

For a biochemical reaction network consisting of 𝑅 reactions, the Gillespie simulation algorithm is a deterministic transformation 
of 𝑅 independent unit-rate Poisson processes, one for each reaction channel. We can couple the models in Equations (27) and (30)

by using the same Poisson process for the single reaction in Equation (30) and for the product formation C ←←←←←←←←←←←←←←←←←→ P + E reaction 
of Equation (27) [11,36]. Using this coupling approach, we first simulate 𝑦lo ∼ 𝑓lo(⋅ ∣ 𝜃) from Equation (30). We then produce the 
coupled simulation 𝑦hi ∼ 𝑓hi(⋅ ∣ 𝜃, 𝑦lo) from the model in Equation (27), using the shared Poisson process. We set the corresponding 
likelihood-free weightings to

𝜔hi(𝜃, 𝑦hi) = 𝐈(|𝑦hi − 𝑦0| < 5),

𝜔lo(𝜃, 𝑦lo) = 𝐈(|𝑦lo − 𝑦0| < 5),

noting that 𝐄(𝜔hi ∣ 𝜃) = 𝐿ABC(𝜃) is the high-fidelity ABC approximation to the likelihood. Fig. 1 illustrates the effect of coupling 
between low-fidelity and high-fidelity models. The five coupled high-fidelity simulations are significantly less variable than the 
independent high-fidelity simulations, appearing almost coincident in Fig. 1. This ensures a large degree of correlation between the 
coupled likelihood-free weightings, 𝜔hi and 𝜔lo. Thus, coupling ensures that 𝜔lo is a reliable proxy for 𝜔hi for use in multifidelity 
likelihood-free inference.

We implement Algorithm 3 by setting a burn-in period of 𝑁0 = 10, 000, for which we generate 𝑚𝑖 ∼ Poi(1) high-fidelity simulations 
at each iteration, 𝑖 ≤𝑁0. Once the burn-in period is complete, we define the partition D by learning a decision tree through a simple 
regression, as described in Section 3.4. For iterations 𝑖 >𝑁0 beyond the burn-in period, we set a step size of 𝛿 = 103 for the gradient 
descent update in Equation (14).

5.1.3. Results

Algorithm 1 was run four times, setting the total number of weighted samples to 𝑁 = 10, 000, 𝑁 = 20, 000, 𝑁 = 40, 000 and 
16

𝑁 = 80, 000. Similarly, Algorithm 3 was run five times, setting 𝑁 = 40, 000, 𝑁 = 80, 000, 𝑁 = 160, 000, 𝑁 = 320, 000 and 𝑁 = 640, 000.
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Fig. 2. Multifidelity ABC. (a) Total simulation cost versus the empirical mean-squared error (MSE) of output estimate, 𝐺̂, for four runs of Algorithm 1 (ABC) and 
five runs of Algorithm 3 (MF-ABC). (b) Values of the multifidelity weight, 𝑤mf , during the longest run of Algorithm 3, for iterations where 𝜔mf ≠ 𝜔lo , such that 
the low-fidelity likelihood-free weighting is corrected based on at least one high-fidelity simulation. (c) The evolution of the values of 𝜈(𝑖)

𝑘
during the longest run 

of Algorithm 3, here different coloured lines are used to distinguish 𝜈(𝑖)
𝑘

between distinct partitions, 𝐷𝑘 , however, the colour itself has no specific interpretation. (d) A 
comparison of the adaptive 𝜈(𝑖)1 to the evolving best estimate of the optimal 𝜈⋆1 , given by Equation (13), based on the Monte Carlo estimates in Equation (19).

Since we do not have access to the true posterior mean, 𝐄𝜋𝜔hi
(𝐺|𝑦0), we use the empirical mean over all high-fidelity runs as a proxy, 

resulting in an empirical MSE estimate for the multifidelity scheme. Fig. 2a shows how the empirical MSE in the estimate, 𝐺̂, varies 
with the total simulation cost, 𝐶tot , shown for each of the two algorithms. The slope of each curve (on a log-log scale) is approximately 
−1, corresponding to the dominant behaviour of the MSE being reciprocal with total simulation time, as observed in Equation (7). 
The offset in the two curves corresponds to the inequality Jmf < Jhi in the leading order coefficient, thereby demonstrating the 
improved performance of Algorithm 3 over Algorithm 1.

The values in Fig. 2b show the multifidelity weights, 𝑤𝑖. We show only those weights not equal to zero or one, corresponding to 
those iterations where 𝜔lo(𝜃𝑖, 𝑦lo,𝑖) has been corrected by at least one 𝜔hi(𝜃𝑖, 𝑦hi,𝑖,𝑗 ) ≠ 𝜔lo(𝜃𝑖, 𝑦lo,𝑖). Clearly there is a significant amount 
of correction applied to the low-fidelity weights. However, as demonstrated by the improved performance statistics, Algorithm 3 has 
learned the required allocation of computational budget to the high-fidelity simulations that balances the trade-off between achieving 
reduced overall simulation times and correcting inaccuracies in the low-fidelity simulation.

Each run of Algorithm 3 includes a burn-in period of 10, 000 iterations, at the conclusion of which a partition D is created, based 
on decision tree regression. In Appendix C, we show how this decision tree is used to define a piecewise-constant mean function, 
specifically for the partition D used for the final run of Algorithm 3 (i.e. 𝑁 = 640, 000 iterations). In Fig. 2c, we show the evolution 
of the values of 𝜈(𝑖)

𝑘
used in this mean function, over iterations 𝑖. Following the updating rule in Equation (19), the trajectory of 

𝜈
(𝑖)
𝑘

converges exponentially towards a Monte Carlo estimate of the optimal value 𝜈⋆
𝑘

given in Equation (13). However, we can 
see from Fig. 2c that, as more simulations are completed and the Monte Carlo estimates in Equation (19) evolve, the values of 
each parameter, 𝜈𝑘, track updated estimates. This is illustrated in Fig. 2d for 𝜈1, where the estimated optimum 𝜈⋆1 evolves as more 
simulations are completed. We note that the gradient descent update in Equation (19) at iteration 𝑖 depends on all 𝜈

(𝑖)
𝑘

values. Thus, 
the observed convergence of 𝜈(𝑖)1 to the evolving estimate of 𝜈⋆1 is not necessarily monotonic.

Fig. 2d illustrates the motivation for the use of gradient descent rather than simply using the analytically obtained optimum. When 
very few simulations have been completed, then the estimates in Equation (10) are small and their ratios are numerically unstable, 
and often far from the true optimum. If 𝜈(𝑖)

𝑘
values are too small in early iterations, then estimates become more numerically unstable, 

since fewer high-fidelity simulations are completed for small 𝜇. Instead, using gradient descent ensures that enough high-fidelity 
simulations are completed for each D𝑘, including those with low volume under the measure 𝜌, to stabilise the estimates required in 
17

Equation (10) and thus stabilise the multifidelity algorithm.
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5.2. Multifidelity Bayesian synthetic likelihood

Consider the same model of enzyme kinetics as in Section 5.1. As depicted in Fig. 1, this model has low-fidelity (Michaelis–

Menten) stochastic dynamics with distribution 𝑓lo(⋅ ∣ 𝜃), and coupled high-fidelity stochastic dynamics with distribution 𝑓hi(⋅ ∣ 𝜃, 𝑦lo). 
We now redefine 𝜔lo and 𝜔hi to be Bayesian synthetic likelihoods, based on 𝐾 pairs of coupled simulations,

𝑦lo,𝑘 ∼ 𝑓lo(⋅ ∣ 𝜃),

𝑦hi,𝑘 ∼ 𝑓hi(⋅ ∣ 𝜃, 𝑦lo,𝑘),

for 𝑘 = 1, … , 𝐾 . That is,

𝜔lo(𝜃,𝐲lo) =N
(
𝑦0 ∶ 𝜇(𝐲lo),Σ(𝐲lo)

)
,

𝜔hi(𝜃,𝐲hi) =N
(
𝑦0 ∶ 𝜇(𝐲hi),Σ(𝐲hi)

)
,

are the Gaussian likelihoods of the observed data, under the empirical mean and covariance of 𝐾 low-fidelity and (coupled) high-

fidelity simulations, respectively. Just like in the ABC example, for simplicity of demonstration we set the importance distribution to 
be equal to the prior, that is, 𝑞 = 𝜋.

Algorithm 1 was run three times, using 𝜔hi(𝜃, 𝐲hi) dependent on high-fidelity simulations 𝐲hi ∼ 𝑓 (⋅ ∣ 𝜃), alone, and setting the num-

ber of iterations to 𝑁 = 2, 500, 𝑁 = 5, 000 and 𝑁 = 10, 000. Similarly, Algorithm 3 was run four times using the coupled multifidelity 
model, setting the number of iterations to 𝑁 = 4, 000, 𝑁 = 8, 000, 𝑁 = 16, 000 and 𝑁 = 32, 000, and initialising with a burn-in of size 
𝑁0 = 2, 000. The adaptive step size is set to 𝛿 = 108. In both algorithms, we set the number of simulations required for each evaluation 
of 𝜔hi(𝜃, (𝑦hi,1, … , 𝑦hi,𝐾 )) or 𝜔lo(𝜃, (𝑦lo,1, … , 𝑦lo,𝐾 )) as 𝐾 = 100.

Fig. 3 depicts the performance of multifidelity BSL inference, where Algorithm 3 is applied with BSL likelihood-free weightings, 
𝜔lo and 𝜔hi. As with MF-ABC, Fig. 3a shows that the MF-BSL generates improved performance over high-fidelity BSL inference, 
achieving lower MSE estimates for a given computational budget. We also note in Fig. 3a that the curve corresponding to MF-

BSL has slope less than −1. This is due to (a) the overhead cost of the initial burn-in period of Algorithm 3, and also (b) the 
conservative convergence of 𝜈(𝑖) to the optimum, as shown in Fig. 3c–d. Both observations imply that earlier iterations are less 
efficiently produced than later iterations, meaning that larger samples show greater improvements than expected from the reciprocal 
relationship in Equation (7).

Comparing Fig. 3b to Fig. 2b, we note that there are very few negative multifidelity weightings in MF-BSL, in comparison to 
MF-ABC. We can conclude that the Bayesian synthetic likelihood, constructed using low-fidelity simulations, tends to underestimate 
the likelihood of the observed data compared to using high-fidelity simulations. We note also in this comparison that the multifidelity 
likelihood-free weightings are on significantly different scales.

6. Discussion

The characteristic computational burden of simulation-based, likelihood-free Bayesian inference methods is often a barrier to their 
successful implementation. Multifidelity simulation techniques have previously been shown to improve the efficiency of likelihood-

free inference in the context of ABC. In this work, we have demonstrated that these techniques can be readily applied to a range 
of likelihood-free approaches. Furthermore, we have introduced a computational methodology for automating the multifidelity 
approach, adaptively allocating simulation resources across different fidelities in order to ensure near-optimal efficiency gains from 
this technique. As parameter space is explored, our methodology, given in Algorithm 3, learns the relationships between simulation 
accuracy and simulation costs at the different fidelities, and adapts the requirement for high-fidelity simulation accordingly.

The multifidelity approach to likelihood-free inference is one of a number of strategies for speeding up inference, which include 
MCMC and SMC sampling techniques [7–9] and methods for variance reduction such as multilevel estimation [16,18,17,29]. A key 
observation in the previous work of Prescott and Baker [12] and Warne et al. [15] is that applying multifidelity techniques provides 
‘orthogonal’ improvements that combine synergistically with these other established approaches to improving efficiency. Similarly, 
we envision that Algorithm 3 can be adapted into an SMC or multilevel algorithm with minimal difficulty, following the templates 
set by Prescott and Baker [12] and Warne et al. [15].

The multifidelity approach discussed in this work is a highly flexible generalisation of existing multifidelity techniques, which can 
be viewed as special cases of Algorithm 2. In each of MF-ABC [11,12], LZ-ABC [20], and DA-ABC [22], it is assumed that 𝜔hi is an 
ABC likelihood-free weighting, which we relax in this work. Furthermore, LZ-ABC and DA-ABC both use 𝜔lo ≡ 0, so that parameters 
are always rejected if no high-fidelity simulation is completed. We relax this assumption to allow for any low-fidelity likelihood-free 
weighting. In all of MF-ABC, LZ-ABC and DA-ABC, the conditional distribution of 𝑀 , given a parameter value 𝜃 and low-fidelity 
simulation output 𝐲lo is Bernoulli distributed, with mean 𝜇(𝜃, 𝐲lo) ∈ (0, 1]. In this work we change this distribution to Poisson, to ease 
analytical results, but any conditional distribution for 𝑀 can be used. These adaptations are explored further in Appendix B.

In the case of MF-ABC (as originally formulated by [11]) and DA-ABC [21,22], the mean function, 𝜇(𝜃, 𝑦lo), depends on a single 
low-fidelity simulation and is assumed to be piecewise constant in the value of the indicator function 𝟏(𝑑(𝑦lo, 𝑦0) < 𝜖). Lazy ABC is 
more generic in its definition of 𝜇 = 𝜇(𝜙(𝜃, 𝐲lo)) to depend on the value of any decision statistic, 𝜙. In this work, we consider more 
general piecewise constant mean functions, 𝜇D, for heuristically derived partitions D of (𝜃, 𝐲lo)-space. We observe that (𝜃, 𝐲lo) may 
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be of very high dimension; in the BSL example in Section 5.2, having 𝐾 = 100 low-fidelity simulations 𝑦lo ∈ℝ10 means that the input 
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Fig. 3. Multifidelity BSL. (a) Total simulation cost versus the empirical MSE of output estimate, 𝐺̂, for three runs of Algorithm 1 (BSL) and four runs of Algorithm 3

(MF-BSL). (b) Values of the multifidelity weight, 𝑤mf , during the longest run of Algorithm 3, for iterations where 𝜔mf ≠ 𝜔lo , such that the low-fidelity likelihood-free 
weighting is corrected based on at least one high-fidelity simulation. (c) The evolution of the values of 𝜈(𝑖)

𝑘
during the longest run of Algorithm 3, here different 

coloured lines are used to distinguish 𝜈(𝑖)
𝑘

between distinct partitions, 𝐷𝑘 , however, the colour itself has no specific interpretation. (d) A comparison of the adaptive 
𝜈
(𝑖)
1 to the evolving best estimate of the optimal 𝜈⋆1 , given by Equation (13), based on the Monte Carlo estimates in Equation (19).

to 𝜇 is of dimension 1003. In this situation, it may be tempting to seek a mean function that only depends on 𝜃. However, we recall 
that the optimal mean function, 𝜇⋆(𝜃, 𝐲lo), derived in Lemma 5, depends on the conditional expectation 𝐄((𝜔hi − 𝜔lo)2 ∣ 𝜃, 𝐲lo). Thus, 
by ignoring 𝐲lo, we would ignore the information about 𝜔hi given by the evaluation of 𝜔lo(𝜃, 𝐲lo). Furthermore, the high dimension 
of the inputs to 𝜇⋆ suggest that this function is not necessarily well-approximated by a decision tree. Future work may focus on 
methods to learn the optimal mean function directly without resorting to piecewise constant approximations [37]. The key problem 
is ensuring the conservatism of any alternative estimate of 𝜇⋆, recalling that the variance of 𝑤mf is inversely proportional to 𝜇.

In the example explored in Section 5, we considered the use of Algorithm 3 where 𝜔hi and 𝜔lo were first both ABC likelihood-free 
weightings, and then both BSL likelihood-free weightings. In principle, this method should also allow for 𝜔lo to be, for example, 
an ABC likelihood-free weighting based on a single low-fidelity simulation, and 𝜔hi to be a BSL likelihood-free weighting based 
on 𝐾 > 1 high-fidelity simulations. However, the success of the multifidelity method depends explicitly on the function 𝜂(𝜃, 𝐲lo) =
𝐄((𝜔hi −𝜔lo)2 ∣ 𝜃, 𝐲lo) being sufficiently small, as quantified in Corollary 6. If 𝜔lo and 𝜔hi are on different scales, as is likely when one 
is an ABC weighting and one a BSL weighting, then this function is not sufficiently small in general, and so the multifidelity approach 
fails. We note, however, that we could instead consider the scaled low-fidelity weighting, 𝜔̃lo = 𝛾𝜔lo, in place of 𝜔lo in Algorithms 2

and 3 with no change to the target distribution. Here, 𝛾 is an additional parameter that can be tuned with 𝜇 when minimising the 
performance metric, Jmf ; the optimal value of this parameter would need to be learned in parallel with the optimal mean function, 
𝜇. We defer this adaptation to future work.

The analysis of performance improvements for multifidelity importance sampling over high-fidelity likelihood-free importance 
sampling assumes the importance distribution, 𝑞(𝜃), is the same in both methods. As mentioned in Section 2, this importance distri-

bution can also be tuned to improve efficiency in a similar way to the cost/variance trade-off that we optimise in the multifidelity 
scheme. While we have not analysed this here, we expect that tuning the proposal distribution could also provide additional im-

provements. While the analysis may be non-trivial, standard adaptive importance sampling could be applied to tune a proposal from 
fixed parametric family [38], or more generally, sequential Monte Carlo methods can be used to deal with this problem practically 
without assuming a parametric form for 𝑞(𝜃) [12]. Future work should consider the performance improvements available when the 
assumption of a fixed proposal is relaxed.

Finally, this work follows Prescott and Baker [11,12] in considering only a single low-fidelity model. There is significant scope 
for further improvements by applying these approaches to suites of low-fidelity approximations [39]. For example, exact stochastic 
19

simulations of biochemical networks, such as that simulated in Section 5, may also be approximated by tau-leaping [33,40], where the 
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time discretisation parameter 𝜏 tends to be chosen to trade off computational savings against accuracy: exactly the trade-off explored 
in this work. Clearly, this parameter therefore has important consequences for the success of a multifidelity inference approach using 
such an approximation strategy. There are several natural extensions that could be applied to include multiple fidelities (such as 
multiple 𝜏 resolutions). As an example, suppose three levels of fidelity, low, medium and high with respective weights 𝜔lo, 𝜔med and 
𝜔hi. In this setting we can apply the multifidelity weighting (Equation (4)) recursively to obtain

𝜔mf (𝜃, 𝐳) = 𝜔lo(𝜃,𝐲lo) +
1

𝜇med(𝜃,𝐲lo)

𝑚∑
𝑖=1

[{
𝜔med(𝜃,𝐲med,𝑖) +

1
𝜇hi(𝜃,𝐲med,𝑖)

𝑛𝑖∑
𝑗=1

[
𝜔hi(𝜃,𝐲hi,𝑗 ) −𝜔med(𝜃,𝐲med,𝑖)

]}
−𝜔lo(𝜃,𝐲lo)

]
,

where 𝑚 is the random number of medium-fidelity simulations conditional on the parameters and the low-fidelity simulation and 
𝑛𝑖 is the random number of high-fidelity simulations conditional on the parameters and the 𝑖th medium-fidelity simulation. The 
mean functions of these random variables are 𝜇med(𝜃, 𝐲lo) and 𝜇hi(𝜃, 𝐲med,𝑖), respectively. Alternatively, we could consider a set of 𝐽
low-fidelity models 𝜔1

lo, … , 𝜔𝐽
lo, that may have different accuracy properties in different partitions of parameter space 𝐷1, … , 𝐷𝐽 . The 

multifidelity weighting can be formulated as

𝜔mf (𝜃, 𝐳) =
𝐽∑
𝑗=1

𝐈(𝜃 ∈𝐷𝑗 )

{
𝜔
𝑗

lo(𝜃,𝐲
𝑗

lo) +
1

𝜇𝑗 (𝜃,𝐲𝑗lo)

𝑚∑
𝑖=1

[
𝜔hi(𝜃,𝐲hi,𝑖) −𝜔lo(𝜃,𝐲

𝑗

lo)
]}

,

assuming that model 𝜔𝑗

lo has the optimal accuracy characteristics in partition 𝐷𝑗 . Of course, it may not be known a priori which 
low-fidelity model performs best in a given partition, and therefore we may choose to include the choice of partition as part of the 
adaptive tuning scheme. In future work, a full exploration of the use of multiple low-fidelity model approximations will be vital for 
the full potential of multifidelity likelihood-free inference to be realised. The theory and practice presented here along with clear 
paths for potential extension have the potential to achieve substantial performance gains in likelihood-free inference.
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Appendix A. Expressions for standard likelihood-free approaches

Here, we briefly highlight how standard likelihood-free approaches can be considered as special cases of our general formulation 
20

in Section 2 of the main manuscript.
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A.1. Approximate Bayesian computation

Approximate Bayesian computation is a widely-used example of likelihood-free inference, where

𝜔ABC(𝜃,𝐲) =
1
𝐾

𝐾∑
𝑘=1

𝐈(𝑑(𝑦𝑘, 𝑦0) ≤ 𝜖),

is the random fraction of 𝐾 simulations, 𝑦𝑘, which are within a distance of 𝜖 of the observed data, 𝑦0, as measured by the metric 
𝑑 [4]. In most cases it is standard to set 𝐾 = 1 [8]. Taking the conditional expectation of 𝜔ABC, given 𝜃, this likelihood-free weighting 
induces the ABC approximation to the likelihood,

𝐿ABC(𝜃) = 𝐄(𝜔ABC ∣ 𝜃) = 𝐏(𝑑(𝑦, 𝑦0) ≤ 𝜖 ∣ 𝜃),

for any 𝐾 . Under appropriate choices of 𝑑 and 𝜖, the approximate likelihood function, 𝐿ABC(𝜃), may be considered approximately 
proportional to the likelihood, L(𝜃).

A.2. Bayesian synthetic likelihood

The BSL approach replaces the true likelihood with a Monte Carlo likelihood-free weighting based on a Gaussian density [6],

𝜔SL(𝜃,𝐲) =N(𝑦0; 𝜇̂(𝐲), Σ̂2(𝐲)),

with empirical mean 𝜇̂(𝐲) =∑𝐾
𝑘=1 𝑦𝑘∕𝐾 , and empirical covariance, Σ̂2(𝐲) =∑𝐾

𝑘=1(𝑦𝑘 − 𝜇)(𝑦𝑘 − 𝜇)𝑇 ∕𝐾 . Taking conditional expectations 
of 𝜔SL, given 𝜃, induces the Bayesian synthetic likelihood, 𝐿SL(𝜃) = 𝐄(𝜔SL(𝜃, 𝐲) ∣ 𝜃), as an approximation of the likelihood, L(𝜃).

A.3. Pseudo-marginal method

For the pseudo-marginal approach, introduced by Andrieu and Roberts [41], we suppose that there exists a simulation-based 
estimator, 𝜔(𝜃, 𝐲), such that the conditional expectation 𝐿𝜔(𝜃) = 𝐄(𝜔 ∣ 𝜃) is an unbiased estimate of L(𝜃) = 𝑓 (𝑦0 ∣ 𝜃). For example, 
following Warne et al. [35], suppose that an intractable density 𝑓 (𝑦 ∣ 𝜃) arising from a stochastic model can be decomposed into an 
underlying latent model, 𝑥 ∼ 𝑔(⋅ ∣ 𝜃), and an observation model, 𝑦 ∼ ℎ(⋅ ∣ 𝜃, 𝑥), such that 𝑓 (𝑦 ∣ 𝜃) = ∫ ℎ(𝑦 ∣ 𝜃, 𝑥)𝑔(𝑥 ∣ 𝜃)d𝑥. Assume that 
the probability densities ℎ(𝑦 ∣ 𝜃, 𝑥) of the observation model can be calculated. Then, for simulations 𝑥𝑘 ∼ 𝑔(⋅ ∣ 𝜃) of the latent model, 
where 𝑘 = 1, … , 𝐾 , we can write

𝜔(𝜃,𝐱) = 1
𝐾

∑
𝑘

ℎ(𝑦0 ∣ 𝜃, 𝑥𝑘),

as a likelihood-free weighting. Taking expectations over 𝐱 ∼ 𝑔(⋅ ∣ 𝜃), we have 𝐿𝜔(𝜃) = 𝐄(𝜔 ∣ 𝜃) = 𝑓 (𝑦0 ∣ 𝜃) =L(𝜃). Thus, 𝐿𝜔(𝜃) is an exact 
approximation [42].

Appendix B. Alternative conditional distributions for 𝑴

The proof above derives the performance measure Jmf given in Equation (9), under the assumption that the conditional distri-

bution of 𝑀 , given 𝜃 and 𝐲lo, is Poisson with mean 𝜇(𝜃, 𝐲lo). The following corollaries adapt the expression for Jmf in the case of 
alternative conditional distributions for 𝑀 . We first define the MSE,

𝐸mf =∬
[
𝜆hi(𝜃,𝐲lo) −𝜔lo(𝜃,𝐲lo)

]2
𝜌(𝜃,𝐲lo)d𝜃d𝐲lo,

between 𝜔lo(𝜃, 𝐲lo) and 𝜆hi(𝜃, 𝐲lo) = 𝐄(𝜔hi ∣ 𝜃, 𝐲lo).

Corollary 7. If 𝑀 ∼ Bin(𝑀max, 𝑝(𝜃, 𝐲lo)) is binomially distributed with maximum value 𝑀max and mean 𝜇(𝜃, 𝐲lo), where 𝑝 = 𝜇∕𝑀max, then

Jmf [𝜇] =
(
𝑐lo +∬ 𝜇(𝜃,𝐲lo)𝑐hi(𝜃,𝐲lo) 𝜌(𝜃,𝐲lo)d𝜃d𝐲lo

)
×
(
𝑉mf −

𝐸mf + Δ𝑞(𝜃)2
𝜂(𝜃,𝐲lo)

𝜌(𝜃,𝐲lo)d𝜃d𝐲lo
)
. (B.1)
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Proof. We substitute Var(𝑀 ∣ 𝜃, 𝐲lo) = 𝜇
(
1 − 𝜇∕𝑀max

)
into Equation (22), and the result follows. □

We note in the result above that for 𝜇 to be the conditional mean of 𝑀 ∼ Bin(𝑀max, 𝑝(𝜃, 𝐲lo)), we must constrain the values of 𝜇
such that 𝜇(𝜃, 𝐲lo) ∈ (0, 𝑀max]. This constraint alters the derivation of the optimal 𝜇⋆, in the case of a binomial conditional distribution 
with fixed 𝑀max.

Corollary 8. If 𝑀 ∼Geo(𝑝(𝜃, 𝐲lo)) is geometrically distributed on the non-negative integers, with mean 𝜇(𝜃, 𝐲lo), where 𝑝 = 1∕(1 + 𝜇), then

Jmf [𝜇] =
(
𝑐lo +∬ 𝜇(𝜃,𝐲lo)𝑐hi(𝜃,𝐲lo) 𝜌(𝜃,𝐲lo)d𝜃d𝐲lo

)
×
(
𝑉mf +𝐸mf +∬ Δ𝑞(𝜃)2

𝜂(𝜃,𝐲lo)
𝜇(𝜃,𝐲lo)

𝜌(𝜃,𝐲lo)d𝜃d𝐲lo
)
. (B.2a)

Proof. We substitute Var(𝑀 ∣ 𝜃, 𝐲lo) = 𝜇 (1 + 𝜇) into Equation (22), and the result follows. □

Appendix C. Mean functions

Algorithm 4 Piecewise constant mean function 𝜇D(𝜃, 𝑦lo; 𝜈) used in MF-ABC Algorithm 3, depicted in Fig. 2c, at final iteration.

Require: 𝜃 = (𝑘1 , 𝑘2 , 𝑘3); 𝑦lo = (𝑦1 , 𝑦2 , … , 𝑦10).
if 𝑦7 ≤ 13.867 then

return 𝜈1 = 0.084.

else

if 𝑘3 ≤ 1.14 then

if 𝑦8 ≤ 16.219 then

return 𝜈2 = 0.616.

else

if 𝑘3 ≤ 0.88 then

return 𝜈3 = 0.08.

else

if 𝑦10 ≤ 26.208 then

if 𝑘1 ≤ 91.265 then

return 𝜈4 = 0.313.

else

return 𝜈5 = 0.76.

end if

else

if 𝑦7 ≤ 15.151 then

return 𝜈6 = 0.761.

else

if 𝑦1 ≤ 3.371 then

if 𝑦5 ≤ 11.264 then

return 𝜈7 = 0.688.

else

return 𝜈8 = 0.467.

end if

else

return 𝜈9 = 0.797.

end if

end if

end if

end if

end if

else

if 𝑦10 ≤ 26.136 then

if 𝑦7 ≤ 14.17 then

return 𝜈10 = 0.929.

else

return 𝜈11 = 0.828.

end if

else

return 𝜈12 = 1.439.

end if

end if
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Algorithm 5 Piecewise constant mean function 𝜇D(𝜃, 𝑦lo; 𝜈) used in MF-BSL Algorithm 3, depicted in Fig. 3c, at final iteration.

Require: 𝜃 = (𝑘1 , 𝑘2 , 𝑘3); 𝑦lo,𝑖 = (𝑦1,𝑖 , 𝑦2,𝑖 , … , 𝑦10,𝑖) for 𝑖 = 1, … , 100.

if 𝑦699 ≤ 15.292 then

if 𝑦779 ≤ 16.237 then

if 𝑦227 ≤ 12.604 then

return 𝜈1 = 0.019.

else

return 𝜈2 = 0.236.

end if

else

return 𝜈3 = 0.287.

end if

else

if 𝑦115 ≤ 9.86 then

if 𝑦787 ≤ 14.336 then

if 𝑦446 ≤ 9.953 then

return 𝜈4 = 0.222.

else

if 𝑦137 ≤ 12.819 then

return 𝜈5 = 0.215.

else

return 𝜈6 = 0.238.

end if

end if

else

return 𝜈7 = 0.262.

end if

else

if 𝑦889 ≤ 22.689 then

if 𝑦804 ≤ 9.032 then

if 𝑦981 ≤ 1.974 then

return 𝜈8 = 0.229.

else

return 𝜈9 = 0.175.

end if

else

if 𝑦900 ≤ 25.689 then

return 𝜈10 = 0.235.

else

return 𝜈11 = 0.132.

end if

end if

else

if 𝑦209 ≤ 24.088 then

return 𝜈12 = 0.102.

else

if 𝑦390 ≤ 30.822 then

return 𝜈13 = 0.092.

else

if 𝑦180 ≤ 35.199 then

return 𝜈14 = 0.04.

else

return 𝜈15 = 0.003.

end if

end if

end if

end if

end if

end if
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