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Parameter Sampling∗
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Abstract. Multifidelity approximate Bayesian computation (MF-ABC) is a likelihood-free technique for pa-
rameter inference that exploits model approximations to significantly increase the speed of ABC
algorithms [T. P. Prescott and R. E. Baker, SIAM/ASA J. Uncertain. Quantif., 8 (2020), pp. 114–
138]. Previous work has considered MF-ABC only in the context of rejection sampling, which does
not explore parameter space particularly efficiently. In this work, we integrate the multifidelity ap-
proach with the ABC sequential Monte Carlo (ABC-SMC) algorithm into a new MF-ABC-SMC
algorithm. We show that the improvements generated by each of ABC-SMC and MF-ABC to the
efficiency of generating Monte Carlo samples and estimates from the ABC posterior are amplified
when the two techniques are used together.
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1. Introduction. An important goal of the mathematical modeling of a physical system
is to be able to make quantitative predictions about its behavior. In order to make accurate
predictions, the parameters of the mathematical model need to be calibrated against experi-
mental data. Bayesian inference is a widely used approach to model calibration that seeks to
unify the information from observations with prior knowledge about the parameters to form a
posterior distribution on parameter space [2, 15, 29]. This approach is based on Bayes’s theo-
rem, whereby the posterior distribution is proportional to the product of the prior distribution
and the likelihood of the data under the model.

However, in many practical settings, the model is often too complicated for the likeli-
hood of the data to be calculated, making the posterior distribution unavailable. In this case,
likelihood-free methods for Bayesian parameter inference become a useful option. Specifically,
approximate Bayesian computation (ABC) is a class of such likelihood-free methods [30, 32].
Rather than calculating the likelihood of the observed data for a given parameter value, it
is estimated. The model is simulated under a particular parameter value, and the simulated
output is then compared with the observed data. If the simulation and observations are suit-
ably close (according to a predetermined metric and threshold [11, 14]), then, in the classical
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MULTIFIDELITY ABC-SMC 789

rejection sampling approach, the likelihood is approximated as 1. Otherwise, the likelihood
is approximated as 0. This binary approximation is usually interpreted as an acceptance or
a rejection of the parameter value input into the simulation. Using this approach, a weighted
Monte Carlo sample from an approximated posterior can be built by repeatedly proposing
parameters from the prior distribution, simulating the model with each parameter, and cal-
culating the binary weight.

One widely acknowledged weakness of the ABC approach is its heavy reliance on repeated
simulation. There has been a significant amount of work dedicated to overcoming this reliance
by exploiting methods for intelligent exploration of parameter space in order to reduce the
number of simulations in areas of low likelihood [30]. For example, the parameters to be input
into the simulation can instead be proposed from a importance distribution, rather than the
prior, which we aim to construct in order to improve the algorithm’s performance. One success-
ful approach to importance sampling is known as ABC sequential Monte Carlo (ABC-SMC),
which aims to build consecutive samples using parameter proposals taken from progressively
closer approximations to the posterior, parameterized by decreasing ABC thresholds [33]. Re-
search in this area has considered how to choose the sequence of decreasing thresholds and
distance metrics [8, 27], and how best to evolve the parameters from one approximation to
produce parameter proposals for the next [1, 3, 12].

Another proposed strategy for overcoming the simulation bottleneck is the multifidelity
ABC (MF-ABC) approach [28]. This approach assumes that, in addition to the model under
investigation (termed the high-fidelity model), there also exists a low-fidelity model, depending
on the same parameters, that is significantly faster to simulate, usually at the cost of being
less accurate [24]. The multifidelity approach to parameter inference uses simulations from
both the low-fidelity model and the high-fidelity model to approximate the likelihood. The
high-fidelity model is simulated as little as possible, to reduce the simulation bottleneck, but
just enough to ensure that the resulting posterior estimate is suitably accurate. This technique
is related to multilevel approaches to ABC [17, 34, 35], which use a decreasing sequence of
ABC-SMC thresholds to produce coupled estimates at different levels. Other approaches that
can be interpreted in the multifidelity framework include lazy ABC [26], delayed acceptance
ABC [10], and early rejection [25]. In each of these, low-fidelity simulations are sometimes
used to reject parameters before completing a high-fidelity simulation. Importantly, the more
general MF-ABC framework in [28] allows for early acceptance as well as early rejection.

A key observation that can be made about these two techniques for improving ABC
performance is that they are orthogonal, in the sense that they improve different aspects of
the ABC approach. ABC-SMC considers only improving the method for proposing parameters
to use in simulations and does not directly affect the binary estimate of the likelihood. In
contrast, MF-ABC makes no change to the parameter proposals, but instead directly alters the
method used to estimate the likelihood by using a combination of both low-fidelity and high-
fidelity model simulations. The complementarity of these two approaches has previously been
shown in the specific context of combining delayed acceptance with SMC [10]. Thus, combining
the general multifidelity framework of [28] with SMC should therefore yield significant speed-
up over existing methods.
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790 T. P. PRESCOTT AND R. E. BAKER

1.1. Outline. In this paper, we bring together these two orthogonal approaches to speed-
ing up ABC algorithms. We will introduce a combined multifidelity ABC sequential Monte
Carlo (MF-ABC-SMC) algorithm. Section 2 formulates the existing ABC algorithms briefly
described above and the techniques we can use to quantify their performance. We then show
how these ABC approaches can be combined in section 3, by incorporating the multifidelity
technique with the sequential importance sampling approach to ABC-SMC. In section 4, we
then fully exploit the SMC framework to optimize the multifidelity approach, producing the
MF-ABC-SMC algorithm in Algorithm 4.1. This new algorithm is applied in section 5 to a
heterogeneous network of Kuramoto oscillators in a hierarchical Bayes parameter estimation
task, to produce low-variance ABC posterior estimates significantly faster than the classical
ABC-SMC approach. Finally, in section 6, we discuss some important open questions for
further optimizing the MF-ABC-SMC algorithm.

2. Theoretical background. Assume that the model we are seeking to calibrate is a map
(usually stochastic) from parameters θ, taking values in a parameter space Θ, to an output y,
taking values in data space Y. We denote this map as a conditional density f(· | θ) on Y, and
term the drawing of y ∼ f(· | θ) as simulating the model, with y termed a simulation. For
Bayesian inference, we furthermore assume the existence of a prior distribution π(·) on Θ and
of the observed data yobs ∈ Y that will be used to calibrate the model. The model induces
the likelihood of the observed data, written as L(θ) = f(yobs | θ), which is a function of θ.
As described previously, the goal of Bayesian inference is to infer the posterior distribution
p(θ | yobs) on Θ, given yobs and π(·). Bayes’s theorem equates the posterior to the product of
likelihood and prior,

p(θ | yobs) =
1

ζ
L(θ)π(θ),

where the normalization constant, ζ, ensures that p(θ | yobs) is a probability density that
integrates to unity.

2.1. Approximate Bayesian computation. Often, the model under consideration is suf-
ficiently complicated that the likelihood cannot be calculated, necessitating a likelihood-free
approach. We assume that, while the value of any f(y | θ) is not available, we are still able to
simulate y ∼ f(· | θ). Let d(y, yobs) denote a metric that quantifies how close any simulation,
y, is to the observed data, yobs. For a positive threshold value ε > 0, we can then define a
neighborhood Ωε(d, yobs) = {y ∈ Y | d(y, yobs) < ε} of model simulations that are “close” to
the data. Typically the dataset, yobs, is constant for the parameter estimation task, and the
distance metric, d, is predetermined. Hence we will often drop the (d, yobs) dependence from
our notation and simply write Ωε for the ε-neighborhood of yobs under the distance function
d.

For a given positive distance threshold ε > 0, ABC replaces the exact likelihood, L(θ),
with the ABC approximation to the likelihood,

(2.1a) Lε(θ) = P(y ∈ Ωε | θ) =

∫
I(y ∈ Ωε)f(y | θ) dy,

which is, to leading order for small ε, approximately proportional to L(θ). The ABC approx-D
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MULTIFIDELITY ABC-SMC 791

imation to the likelihood then induces the ABC posterior,

(2.1b) pε(θ | yobs) =
1

Z
Lε(θ)π(θ),

where (similarly to ζ above) the constant Z ensures that the ABC posterior is a probability
distribution with unit integral.

Algorithm 2.1 Importance sampling ABC (ABC-IS)

Input: Data yobs and neighborhood Ωε; model f(· | θ); prior π; importance distribution q̂
proportional to q; sample index n = 0; stopping criterion S.

Output: Weighted sample {θn, wn}Nn=1.
1: repeat
2: Increment n← n+ 1.
3: Generate θn ∼ q̂(·).
4: Simulate yn ∼ f(· | θn).
5: Set wn =

[
π(θn)

/
q(θn)

]
· I (yn ∈ Ωε).

6: until S = true.

The importance sampling ABC algorithm [23, 30] presented in Algorithm 2.1 (ABC-IS)
presents a simple method for drawing samples from the ABC posterior, pε(θ | yobs). In addition
to the data, yobs, and the prior, π(θ), we assume an importance probability distribution
q̂(θ) = q(θ)/Zq defined by the function q(θ), where q(θ) > 0 for all θ in the support of π. Note
that we do not assume that the normalization constant Zq is known. For each parameter
proposal θn ∼ q̂(·) from the importance distribution, the model yn ∼ f(· | θn) is simulated
and a weight wn = w(θn, yn) is assigned, using the weighting function,

(2.2) w(θ, y) =
[
π(θ)

/
q(θ)

]
· I(y ∈ Ωε) ≥ 0,

to produce a weighted sample {wn, θn}.
Note that the general stopping criterion used in Algorithm 2.1 allows for the algorithm to

terminate after (for example) a fixed number of nonzero weights, a fixed number of parameter
proposals, N , when a fixed budget of total computational time or memory is reached, or any
other more complicated combination of such conditions. Furthermore, we note that ABC-IS is
easily parallelized, although care must be taken to ensure that the chosen stopping condition
is correctly applied in this case [16]. If we choose the importance distribution q̂ = π equal to
the prior, then Algorithm 2.1 (ABC-IS) is known as rejection sampling, which we refer to as
ABC-RS.

For any arbitrary function F (·) defined on the parameter space Θ, we can estimate the
expected value of F (θ) under pε(θ | yobs), such that

(2.3) Epε(F (θ)) ≈ F̄ =

∑N
n=1wnF (θn)∑N

n=1wn
.

Although this estimate is biased (except in the ABC-RS case), it is consistent, such that the
mean squared error (MSE) of F̄ is dominated by the variance and decays to 0 on the order
1/N .D
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792 T. P. PRESCOTT AND R. E. BAKER

2.2. Sequential Monte Carlo (SMC). Sequential Monte Carlo (SMC) is commonly used
to efficiently explore parameter space in ABC. The goal is to propagate a sample from the prior
through a sequence of intermediate distributions towards the target distribution, pε(θ | yobs).
The intermediate distributions are typically the sequence of ABC approximations pεt , for
t = 1, . . . , T , defined by a sequence of decreasing thresholds, ε1 > · · · > εT = ε. Algorithm 2.2
presents the sequential importance sampling approach to ABC-SMC [3, 7, 31, 33], also known

as population Monte Carlo [5]. Each Monte Carlo sample {θ(t)
n , w

(t)
n } built at generation t is

used to construct an importance distribution q̂t+1, defined in (2.4), that is used to generate

the next generation’s Monte Carlo sample. The final sample, {θ(T )
n , w

(T )
n }, is produced by

Algorithm 2.1 using importance distribution q̂T and threshold εT = ε. Note that Algorithm 2.2
requires the specification of a threshold sequence εt, the stopping conditions St, and the
perturbation kernels Kt(· | θ) for t = 1, . . . , T [30]. We will not re-examine these aspects of
ABC-SMC in detail in this paper and will implement ABC-SMC using established techniques
to select εt, St, and Kt [3, 8, 12, 33].

Algorithm 2.2 Sequential Monte Carlo ABC (ABC-SMC)

Input: Data yobs; sequence of nested neighborhoods ΩεT ⊆ ΩεT−1 ⊆ · · · ⊆ Ωε1 for 0 <
ε = εT < εT−1 < · · · < ε1; prior π; perturbation kernels Kt(· | θ); initial importance
distribution q̂1 (often set to π); model f(· | θ); stopping conditions S1, S2, . . . , ST .

Output: Weighted sample
{
θ

(T )
n , w

(T )
n

}NT
n=1

.

1: for t = 1, . . . , T − 1 do

2: Produce {θ(t)
n , w

(t)
n }Ntn=1 using Algorithm 2.1 (ABC-IS) with importance distribution q̂t,

neighborhood Ωεt , and stopping condition St.
3: Define the next importance distribution, q̂t+1, proportional to

(2.4) qt+1(θ) =


∑Nt

n=1w
(t)
n Kt(θ | θ(t)

n )

/∑Nt
m=1w

(t)
m , π(θ) > 0,

0 else.

4: end for

5: Produce
{
θ

(T )
n , w

(T )
n

}NT
n=1

using Algorithm 2.1 (ABC-IS) with importance distribution q̂T ,

neighborhood ΩεT = Ωε, and stopping condition ST .

One weakness of the population Monte Carlo approach taken in Algorithm 2.2 is the
O(N2) cost for each run of Algorithm 2.1 (ABC-IS), where Nt ∼ N is the scale of each
generation’s sample size. To overcome this problem, the SMC sampler was adapted in [8]

to reduce this cost to O(N). When the calculation of each w
(t)
n is dominated by qt(θ

(t)
n ),

then a significant computational burden can be alleviated through using the O(N) sampling

approach. However, in many practical problems, the calculation of each weight, w
(t)
n , is instead

dominated by sampling y
(t)
n ∼ f(· | θ(t)

n ). We will focus on the latter setting and aim to reduce

the cost of ABC-SMC through reducing the cost of calculating each w
(t)
n using the multifidelity

approach described in subsection 2.3.D
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2.3. Multifidelity ABC. Subsection 2.2 describes how the SMC strategy provides pa-
rameter proposals such that simulation time is not wasted in regions of low likelihood. An
orthogonal approach to improving ABC efficiency is to avoid computationally expensive sim-
ulations, where possible, by relying on the multifidelity framework [28]. We term the model
of interest, f(· | θ), which maps parameter space Θ to an output space Y, as the high-fidelity
model. We now assume that, in addition, there is a low-fidelity (i.e., approximate) model,
f̃(· | θ), of the same physical system with the same parameter space Θ. The simulations of
this model are denoted by ỹ ∼ f̃(· | θ), taking values in the output space Ỹ, which may differ
from Y. Importantly, we assume that the low-fidelity model is computationally cheaper, in the
sense that simulations ỹ ∼ f̃(· | θ) of the low-fidelity model incur less computational burden
than simulations y ∼ f(· | θ) of the high-fidelity model.

We can also assume that the experimental observations yobs ∈ Y can be mapped to the
new data space, giving ỹobs ∈ Ỹ. Similarly, we define an associated region,

Ω̃ε = Ω̃ε(ỹobs, d̃) = {ỹ ∈ Ỹ | d̃(ỹ, ỹobs) < ε̃},

which is the ε̃-neighborhood of the observed data, ỹobs, as a subset of the output space Ỹ,
defined under the distance metric d̃. However, in the interest of clarity, we will assume for the
remainder of this article that the output spaces of each model fidelity are such that Ỹ = Y.
Similarly, we assume that the observed data are such that ỹobs = yobs, the distance metrics
are such that d̃ = d, and the ABC thresholds are such that ε̃ = ε, so that Ω̃ε̃ = Ωε.

In general, the models f(· | θ) and f̃(· | θ) can be simulated independently for a given θ.
Then, if the low-fidelity model is a good approximation to the high-fidelity model, the outputs
y and ỹ will be near, in some sense, and the distances from data d(y, yobs) and d(ỹ, yobs) will
be correlated. However, to improve this correlation we will also allow for coupling between
the two models, writing f̌(y, ỹ | θ) as the coupled density for (y, ỹ) with marginals that
coincide with the independent models f(y | θ) and f̃(ỹ | θ). The benefit of this approach
is that, with a judicious choice of coupling, we can produce a high-fidelity simulation y ∼
f(· | ỹ, θ) conditionally on a previously simulated low-fidelity simulation, ỹ ∼ f̃(· | θ), where
the distances are more closely correlated. Furthermore, simulations of y ∼ f(· | ỹ, θ) may be
less computationally burdensome than independent simulations of y ∼ f(· | θ).

For example, suppose the high-fidelity model is a Markovian stochastic dynamical system
on the time horizon t ∈ [0, T ], and that the low-fidelity model is the same system on t ∈
[0, τ ] for τ < T [26]. The low-fidelity and high-fidelity models can clearly be simulated
independently on [0, τ ] and [0, T ], respectively, and the low-fidelity simulation will, on average,
be less computationally expensive than the high-fidelity simulation. However, the natural
coupling of the models fixes y(t) = ỹ(t) over t ∈ [0, τ ], allowing the high-fidelity model to be
simulated conditional on a low-fidelity simulation. Many other possible couplings exist for
different multifidelity models, often involving shared random noise processes, and methods for
coupling are currently an area of active research [6, 18, 28].

In order to apply the multifidelity framework to ABC parameter inference, recall that each
weight, wn, generated by Algorithm 2.1 requires a simulation yn ∼ f(· | θn) from the high-
fidelity model. The multifidelity approach in [28] calculates the weight wn = w(θn, ỹn, un, yn)D
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794 T. P. PRESCOTT AND R. E. BAKER

by replacing the weighting function in (2.2) with

(2.5) w(θ, ỹ, u, y) =
π(θ)

q(θ)

(
I(ỹ ∈ Ωε) +

I(u < α(θ, ỹ))

α(θ, ỹ)
[I(y ∈ Ωε)− I(ỹ ∈ Ωε)]

)
,

where (ỹ, y) ∼ f̌(·, · | θ) are coupled multifidelity simulations, where u is a unit uniform
random variable, and where α(θ, ỹ) ∈ (0, 1] is a positive continuation probability. Note that,
in general, we could allow the continuation probability, α(θ, ỹ, u, y), to depend on all of the
stochastic variables, but we will assume α(θ, ỹ) ∈ (0, 1] to be independent of u and y.

The important consequence of the multifidelity weight in (2.5) is that, by the specific
order in which we simulate the variables, the weight w(θ, ỹ, u, y) may be calculated without
the computational cost of simulating y. Given θ, we first simulate ỹ ∼ f̃(· | θ) from the low-
fidelity model. This defines the continuation probability α(θ, ỹ) ∈ (0, 1]. Second, we generate
the unit uniform random variable, u. If u ≥ α(θ, ỹ) ∈ (0, 1], then we can return w(θ, ỹ, u, y)
without simulating y ∼ f(· | θ, ỹ) from the coupling, thus incurring the lower computational
expense of only simulating from f̃ . Algorithm 2.3 is an adaptation of Algorithm 2.1 that
returns a weighted sample {θn, wn}Nn=1 from the ABC posterior pε(yobs | θ), with weights
calculated using w in (2.5). As with Algorithm 2.1, in the rejection sampling case where
q̂(θ) = π(θ), then we refer to this algorithm as MF-ABC-RS.

Algorithm 2.3 Multifidelity ABC importance sampling (MF-ABC-IS)

Input: Data yobs and neighborhood Ωε; prior π; coupling f̌(·, · | θ) of models f(· | θ) and
f̃(· | θ); continuation probability function α = α(θ, ỹ); sample index n = 0; importance
distribution q̂ proportional to q(θ); stopping condition S.

Output: Weighted sample {θn, wn}Nn=1.
1: repeat
2: Increment n← n+ 1.
3: Generate θn ∼ q̂(·).
4: Simulate ỹn ∼ f̃(· | θn).
5: Set wn = I (ỹn ∈ Ωε).
6: Generate un ∼ Uniform(0, 1).
7: if un < α(θn, ỹn) then
8: Simulate yn ∼ f(· | ỹn, θn).
9: Update wn ← wn + [I(yn ∈ Ωε)− wn]

/
α(θn, ỹn).

10: end if
11: Update wn ←

[
π(θn)

/
q(θn)

]
wn.

12: until S = true.

Proposition 2.1. The weighted Monte Carlo sample {θn, wn} returned by Algorithm 2.3 is
from the ABC posterior pε(θ | yobs).

Proof. We note that the density of each z = (θ, ỹ, u, y) sampled by Algorithm 2.3 is

g(z) = f̌(ỹ, y | θ)q̂(θ)D
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on Z = Θ×Y × [0, 1]×Y. Furthermore, the multifidelity weight in (2.5) integrates such that∫ 1

0
w(z) du =

π(θ)

q(θ)
I(y ∈ Ωε),

which is independent of ỹ. Therefore, for any integrable F : Θ→ R, we have the identity∫
Θ
F (θ)πε(θ | yobs) dθ =

Zq
Z

∫
Θ×Y

F (θ)
π(θ)

q(θ)
I(y ∈ Ωε)f(y | θ)q̂(θ) dθ dy

=
Zq
Z

∫
Θ×Y2

F (θ)
π(θ)

q(θ)
I(y ∈ Ωε)f̌(ỹ, y | θ)q̂(θ) dθ dy dỹ

=
Zq
Z

∫
Z
F (θ)w(z)g(z) dz.

Thus the normalized Monte Carlo estimate in (2.3) is consistent for a weighted sample from
Algorithm 2.3.

The key issue for Algorithm 2.3 (MF-ABC-IS) is the choice of continuation probability,
α(θ, ỹ) ∈ (0, 1]. Smaller values for α lead to greater computational savings, since high-fidelity
simulations are generated less often. However, it is possible to show that this comes at the
cost of an increase in the MSE of the estimators, F̄ , of integrable functions F : Θ → R. In
subsection 2.4, we quantify this tradeoff through the definition of the algorithm’s efficiency.

Note 2.2. The multifidelity weight in (2.5) compares a uniform u ∈ [0, 1] with α(θ, ỹ). In
more generality, we may consider any multifidelity weight w(θ, ỹ, u, y) that depends on u ∈ U
with any distribution, p(u | θ, ỹ), that does not rely on the expensive high-fidelity model. If
w is designed such that∫

u∈U
w(θ, ỹ, u, y)p(u | θ, ỹ) du =

π(θ)

q(θ)
I(y ∈ Ωε),

then, by an extension of Proposition 2.1, the multifidelity weight remains valid.

2.4. ABC performance. In section 2 so far, we have summarized previous developments
of ABC algorithms that aim to improve performance but have not yet defined how to quantify
this improvement. For any weighted sample {θn, wn} built using Algorithm 2.1 (ABC-IS) or
Algorithm 2.3 (MF-ABC-IS), each sampled pair (θn, wn) also incurs a computational cost,
which we will denote by Tn, producing a total computational cost of Ttotal =

∑
n Tn for the

sample. We define the observed efficiency of such a sample as follows.

Definition 2.3. The effective sample size [9, 19] of a weighted Monte Carlo sample {θn, wn}
is

ESS =
(
∑

nwn)2∑
nw

2
n

.

Given a computational cost of Tn for each sampled pair (wn, θn), the observed efficiency of a
weighted Monte Carlo sample is

ESS

Ttotal
=

(
∑

nwn)2

(
∑

nw
2
n) (
∑

n Tn)
,

which is expressed in units of effective samples per time unit.D
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796 T. P. PRESCOTT AND R. E. BAKER

Larger values of ESS typically correspond to smaller values of MSE in estimates of the
form in (2.3). Since ESS and Ttotal both scale linearly with N , taking limits as N →∞ in the
observed efficiency motivates the following definition of the theoretical efficiency of an ABC
algorithm.

Definition 2.4. The theoretical efficiency of an ABC algorithm generating a weighted Monte
Carlo sample {θn, wn} with simulation times {Tn} is

ψ =
E(w)2

E(w2)E(T )
,

which is expressed in units of effective samples per time unit.

Note that the theoretical efficiency is not just a characteristic of the ABC algorithm and
of the models, but also of the numerical implementation and hardware of the computers
generating the simulation. For example, the theoretical efficiency of Algorithm 2.1 (ABC-IS)
is

ψABC-IS =
Z

Eπε(π/q̂)Eq̂(T )
,

where Z = p(y ∈ Ωε) is the normalization constant in (2.1b), and where Eν denotes expecta-
tions with respect to probability density ν. Setting q̂ = π, the theoretical efficiency of ABC-RS
is

ψABC-RS =
Z

Eπ(T )
.

Hence, the theoretical efficiency of ABC-IS is improved over ABC-RS by choosing an impor-
tance distribution, q̂, that is more likely than π to propose θ incurring smaller simulation times
and high posterior likelihoods. In the case of Algorithm 2.3 with q̂(θ) = π(θ) (MF-ABC-RS),
this performance measure has been used to determine a good choice of continuation probabil-
ity, α(θ, ỹ) [28].

By using the theoretical efficiency, ψ, as a performance metric in the remainder of this
paper, we will quantify the improvement in performance over Algorithms 2.1 to 2.3 that can
be achieved by combining multifidelity and SMC techniques.

3. Multifidelity ABC-SMC. There are two distinct approaches to improving the perfor-
mance of ABC parameter inference specified in section 2. ABC-SMC proposes parameters
θn from a sequence of importance distributions that progressively approximate the target
ABC approximation to the posterior. In contrast, MF-ABC enables sampled parameters to
be weighted without necessarily having to produce a simulation, yn, from the high-fidelity
model. In this section we present the main contribution of this paper, which is to combine
these orthogonal approaches into an MF-ABC-SMC algorithm.

We will replicate the procedure of extending Algorithm 2.1 (ABC-IS) into Algorithm 2.2
(ABC-SMC) in the multifidelity context, focusing first on the O(N2) SMC sampler based
on sequential importance sampling. Suppose that, as in subsection 2.2, we have a decreasing
sequence of thresholds, ε1 > · · · > εT = ε, inducing the neighborhoods, Ωε1 ⊇ · · · ⊇ ΩεT , and a
sequence of ABC posteriors, pεt(θ | yobs). In principle, we can replace the call of Algorithm 2.1
(ABC-IS) in step 2 of Algorithm 2.2 with a call of Algorithm 2.3 (MF-ABC-IS) instead, andD

ow
nl

oa
de

d 
04

/1
3/

22
 to

 8
9.

24
1.

97
.1

00
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

MULTIFIDELITY ABC-SMC 797

the SMC algorithm would proceed in much the same way. However, the key difficulty with
implementing MF-ABC-SMC lies in the definition of the importance distribution, q̂t+1, for

generation t+ 1, given the Monte Carlo sample, {θ(t)
n , w

(t)
n }Ntn=1, returned in generation t.

Since the weights, wn, are now calculated using the multifidelity weight in (2.5), there is
a positive probability that there exist wn < 0. Negative values of wn are generated whenever
ỹn ∈ Ωε, but where we also simulate the high-fidelity model such that yn /∈ Ωε. This leads to
two problems with the existing definition of the importance distribution in (2.4). Primarily,
there may exist θ in the prior support with qt+1(θ) < 0, unless the perturbation kernels,
Kt, are carefully designed to avoid this. Second, even if the Kt could be chosen to guarantee
qt+1(θ) > 0 on the prior support, it is not clear that we can easily sample from the importance

distribution q̂t+1 ∝ qt+1 when some θ
(t)
n have negative weights.

Algorithm 3.1 Multifidelity ABC-SMC with predetermined αt (MF-ABC-SMC-α)

Input: Data yobs; sequence of nested neighborhoods ΩεT ⊆ ΩεT−1 ⊆ · · · ⊆ Ωε1 for 0 < ε =

εT < εT−1 < · · · < ε1; prior π; coupling f̌(·, · | θ) of models f(· | θ) and f̃(· | θ); initial
importance distribution r̂1 (often set to π); perturbation kernels Kt(· | θ); continuation
probabilities αt(θ, ỹ); stopping conditions St, where t = 1, . . . , T .

Output: Weighted sample {θ(T )
n , w

(T )
n }NTn=1.

1: for t = 1, . . . , T − 1 do

2: Produce {θ(t)
n , w

(t)
n }Ntn=1 from Algorithm 2.3 (MF-ABC-IS), using the neighborhood Ωεt ,

continuation probability αt, importance distribution r̂t, and stopping condition St.

3: Set ŵ
(t)
n = |w(t)

n | for n = 1, . . . , Nt.
4: Define r̂t+1 proportional to rt+1 given in (3.1).
5: end for
6: Produce {θ(T )

n , w
(T )
n }NTn=1 from Algorithm 2.3, using neighborhood Ωε, continuation prob-

ability αT , importance distribution r̂T , and stopping condition ST .

In Algorithm 3.1 (MF-ABC-SMC-α) we have adapted the SMC approach to counter the
possibility of negative weights, by considering a sampling algorithm that produces nonnegative

weights ŵ
(t)
n ≥ 0 in parallel with w

(t)
n . This method closely parallels the approach to the sign

problem taken in [20]. At each generation we produce two weighted samples at once, {ŵ(t)
n , θ

(t)
n }

and {w(t)
n , θ

(t)
n }. We replace the importance distribution q̂t+1 defined by qt+1 in (2.4) with the

importance distribution r̂t+1 proportional to the nonnegative function

(3.1) rt+1(θ) =


∑N

n=1 ŵ
(t)
n Kt(θ | θ(t)

n )

/∑N
m=1 ŵ

(t)
m , π(θ) > 0,

0 else,

which is defined by the weights ŵ
(t)
n = |w(t)

n |. With this choice of importance distribution, the

weighted samples {ŵ(t)
n , θ

(t)
n } can be shown to be drawn from the alternative target distribu-

tion,

(3.2) ρt(θ) ∝ pεt(θ | yobs) + δt(θ),D
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798 T. P. PRESCOTT AND R. E. BAKER

where the difference between the new target distribution, ρt, and the ABC posterior, pεt , is
given by

δt(θ) = 2π(θ)

∫
Y2

(1− αt(θ, ỹ))I(ỹ ∈ Ωεt)I(y /∈ Ωεt)f̌(ỹ, y | θ) dỹ dy

for t = 1, . . . , T . The function δt implies that the new target distribution (compared to πεt)
contains additional density in regions of parameter space where it is more likely that ỹ ∈ Ωεt

but y /∈ Ωεt , in other words, where w
(t)
n < 0 is more likely.

The importance distribution in (3.1) effectively makes the SMC algorithm target ρt at each

generation instead of pεt . However, the weighted samples {w(t)
n , θ

(t)
n } based on the multifidelity

weights w
(t)
n from each generation’s weighting function,

(3.3) wt(θ, ỹ, u, y) =
π(θ)

rt(θ)

(
I(ỹ ∈ Ωεt) +

I(u < αt(θ, ỹ))

αt(θ, ỹ)
[I(y ∈ Ωεt)− I(ỹ ∈ Ωεt)]

)
,

remain from the ABC posteriors pεt . Hence, at any generation (and in particular at t = T ),
we can produce an estimate of a pεt-integrable function F : Θ→ R, such that

Epεt (F ) ≈
∑

nw
(t)
n F (θ

(t)
n )∑

mw
(t)
m

is a consistent Monte Carlo estimate of F under the ABC posterior.

Note 3.1. Each calculation of the weight in (3.3) relies on the O(N) calculation of the
importance weight in (3.1), making the SMC sampler O(N2). An alternative sampling method
that is linear in N is proposed in [8], which replaces the sequential importance sampling
approach described above. However, as noted in [8], both the O(N) and the O(N2) sampling
algorithms require O(N) simulations of (ỹ, y) ∼ f̌(·, · | θ) or ỹ ∼ f̃(· | θ). In this multifidelity
setting, we are assuming that simulation time comprises the vast majority of the computational
burden of each calculation of (3.3). The benefit of the multifidelity weight is that it reduces
the computational burden of generating (ỹ, y) by sometimes requiring ỹ alone. In section SM1
of the supplementary materials, linked from the main article webpage, we show that the O(N)
SMC sampling algorithm dilutes this benefit. Therefore, in this work we will focus on the
sequential importance sampling SMC sampler described in Algorithm 3.1.

4. Adaptive MF-ABC-SMC. In Algorithm 3.1 (MF-ABC-SMC-α), in addition to an as-
sumed sequence of ABC thresholds, εt, perturbation kernels, Kt, and stopping conditions
St, for t = 1, . . . , T , we also assume a given sequence of continuation probabilities, αt. In
this algorithm, each importance distribution, r̂t+1, is determined by the output at genera-
tion t. Methodologies for adaptively choosing the perturbation kernels, Kt+1, and the ABC
thresholds, εt+1, based on the preceding generations’ samples, have been explored in previ-
ous work [8, 12]. In this section, we will consider the adaptive approach to choosing each
generation’s continuation probability, αt+1, based on the simulation output of generation t.

4.1. Optimal continuation probabilities. For each generation, t, the continuation proba-
bility, αt, is an input into that generation’s call of Algorithm 2.3. Dropping the generationalD
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MULTIFIDELITY ABC-SMC 799

indexing t temporarily, in this subsection we first consider how to choose a continuation prob-
ability function, α(θ, ỹ), to maximize the theoretical efficiency, ψ, of any run of Algorithm 2.3
(MF-ABC-IS), as specified in Definition 2.4.

For simplicity, we will constrain the search for optimal α(θ, ỹ) to the piecewise constant
function

(4.1) α(θ, ỹ) = η1I(ỹ ∈ Ωε) + η2I(ỹ /∈ Ωε)

for the constants η1, η2 ∈ (0, 1]. Here, η1 is the probability of generating y after a “posi-
tive” low-fidelity simulation (where ỹ ∈ Ωε) and η2 is the probability of generating y after a
“negative” low-fidelity simulation (where ỹ /∈ Ωε). The goal of this section is to specify the
values of the two parameters, η1 and η2, that will give the largest theoretical efficiency, ψ.
In previous work, we have derived the optimal values of η1 and η2 to use in the special case
of Algorithm 2.3 (MF-ABC-RS) corresponding to rejection sampling, where the importance
distribution q̂ = π is equal to the prior distribution [28]. We can now extend this analysis by
finding optimal values of η1 and η2 to use in the more general case of Algorithm 2.3 (MF-ABC-
IS). The key to this optimization is the following lemma, which describes how the efficiency
of Algorithm 2.3 varies with the continuation probabilities used. The lemma assumes a given
importance distribution, q̂(θ), defined as the normalization of the known nonnegative function
q(θ).

Lemma 4.1. The theoretical efficiency, given in Definition 2.4, of Algorithm 2.3 (MF-
ABC-IS) varies with the continuation probabilities η1 and η2 according to

ψ(η1, η2) =
E(w)2

E(w2)E(T )
=

Z2

φ(η1, η2)
,

where the denominator is expressed as a function of (η1, η2) such that

(4.2) φ(η1, η2) =

(
W +

(
1

η1
− 1

)
Wfp +

(
1

η2
− 1

)
Wfn

)(
T̄lo + η1T̄hi,p + η2T̄hi,n

)
.

The coefficients in ψ are given by the integrals

Z =

∫
Lε(θ)π(θ) dθ, Lε(θ) =

∫
Y2

I(y ∈ Ωε)f̌(ỹ, y | θ) dỹ dy,(4.3a)

W =

∫
π(θ)

q(θ)
Lε(θ)π(θ) dθ,(4.3b)

Wfp =

∫
π(θ)2

q(θ)
pfp(θ) dθ, pfp(θ) =

∫
Y2

I(ỹ ∈ Ωε)I(y /∈ Ωε)f̌(ỹ, y | θ) dỹ dy,(4.3c)

Wfn =

∫
π(θ)2

q(θ)
pfn(θ) dθ, pfn(θ) =

∫
Y2

I(ỹ /∈ Ωε)I(y ∈ Ωε)f̌(ỹ, y | θ) dỹ dy,(4.3d)

T̄lo =

∫
Tlo(θ)q(θ) dθ, Tlo(θ) =

∫
Y2

T (ỹ)f̌(ỹ, y | θ) dỹ dy,(4.3e)

T̄hi,p =

∫
Thi,p(θ)q(θ) dθ, Thi,p(θ) =

∫
Y2

T (y)I(ỹ ∈ Ωε)f̌(ỹ, y | θ) dỹ dy,(4.3f)
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800 T. P. PRESCOTT AND R. E. BAKER

T̄hi,n =

∫
Thi,n(θ)q(θ) dθ, Thi,n(θ) =

∫
Y2

T (y)I(ỹ /∈ Ωε)f̌(ỹ, y | θ) dỹ dy,(4.3g)

where T (ỹ) is the computational cost of simulating ỹ ∼ f̃(· | θ) and where T (y) is the cost of
simulating y ∼ f(· | θ, ỹ), such that T (ỹ) + T (y) is the cost of simulating (ỹ, y) ∼ f̌(·, · | θ).

4.1.1. Optimizing efficiency. We can conclude from Lemma 4.1 that the optimal continu-
ation probabilities (η?1, η

?
2) in any closed, bounded domain H ⊆ (0, 1]2 are those that minimize

the function φ(η1, η2) given in (4.2). Lemmas 4.2 and 4.3 below explicitly find the global
minimizer of φ over [0,∞)2 (if it exists), and then over the boundary ∂H of a rectangular
domain H = [ρ1, 1] × [ρ2, 1], where the user-specified lower bounds ρ1 and ρ2 are chosen to
ensure H is closed. These results combine in Proposition 4.4 to give the minimizer of φ over
H and hence the optimal continuation probabilities for use in Algorithm 2.3.

Lemma 4.2. We first consider all nonnegative values of η1, η2 ≥ 0. If W > Wfp + Wfn,
then the minimum value of φ(η1, η2) in (4.2), and the optimal value of (η1, η2) in the entire
positive quadrant, are given by

φ̄ =

(√
(W −Wfp −Wfn)T̄lo +

√
WfpT̄hi,p +

√
WfnT̄hi,n

)2

,(4.4a)

(η̄1, η̄2) =

(√
T̄lo

W −Wfp −Wfn
·
Wfp

T̄hi,p
,

√
T̄lo

W −Wfp −Wfn
· Wfn

T̄hi,n

)
,(4.4b)

respectively. If W ≤Wfp +Wfn, then there is no minimum of φ(η1, η2) in η1, η2 ≥ 0.

Lemma 4.3. Under the same conditions as Lemma 4.2, fix the closed region H = [ρ1, 1]×
[ρ2, 1] of positive continuation probabilities with user-defined lower bounds ρ1, ρ2 ∈ (0, 1).
Define the two functions for x > 0:

η1(x) = max

{
ρ1, min

[
1,

√
T̄lo + T̄hi,nx

W −Wfp − (1− x−1)Wfn
·
Wfp

T̄hi,p

]}
,(4.5a)

η2(x) = max

{
ρ2, min

[
1,

√
T̄lo + T̄hi,px

W − (1− x−1)Wfp −Wfn
· Wfn

T̄hi,n

]}
.(4.5b)

Then the minimum value of φ on the boundary, ∂H, of H is attained at the minimum of
φ(1, η2(1)), φ(η1(1), 1), φ(ρ1, η2(ρ1)), or φ(η1(ρ2), ρ2).

Proposition 4.4. Assume the same conditions as in Lemmas 4.2 and 4.3. Compute the
minimizer, (η̄1, η̄2), and minimal value, φ̄, of φ in (0,∞)2 using Lemma 4.2, if they exist. If
(η̄1, η̄2) ∈ H, then set (η?1, η

?
2) = (η̄1, η̄2) and φ? = φ̄. Otherwise, set φ? equal to the minimum

of the four values of φ listed in Lemma 4.3 and (η?1, η
?
2) to the associated argument. Then φ?

is the minimum value of φ over (η1, η2) ∈ H, and (η?1, η
?
2) are the minimizing continuation

probabilities.

4.1.2. Interpreting efficiency. The optimized efficiency of Algorithm 2.3 is determined by
the values of the various coefficients defined in (4.3). The normalization constant, Z, and theD
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ABC approximation to the likelihood, Lε, are properties of the ABC approach as defined in
(2.1). The coefficient W can be written W = ZEπ(pε/q) as a scaling of the prior expectation of
the ratio pε/q. Larger values of W require q to be more concentrated (relative to π) in regions
of high posterior density, which is a well-known characteristic of importance sampling [23].
Thus, neither Z nor W relate specifically to the multifidelity approach and are properties of
ABC importance sampling.

The coefficient T̄lo represents the average time taken to simulate ỹ from the low-fidelity
model. The other two time-based coefficients, T̄hi,p and T̄hi,n, represent the average time
taken to complete the simulation of (ỹ, y) ∼ f̌ from the coupling, conditional on whether or
not ỹ ∈ Ωε. These coefficients therefore determine how much time can be saved by avoiding
expensive simulations and stopping after generating ỹ ∼ f̃(· | θ).

The key determinants of the success of the multifidelity technique are Wfp and Wfn and
their tradeoff between the high-fidelity simulation costs, T̄hi,p and T̄hi,n. Equation (4.2) implies
that the marginal cost to the efficiency of decreasing η1 and η2 is smaller for smaller values of
Wfp and Wfn. These coefficients can be written as the two prior expectations,

Wfp = Eπ
(
π

q
pfp

)
, Wfn = Eπ

(
π

q
pfn

)
.

Thus, they are scalings of the probabilities of a false positive (where ỹ ∈ Ωε but y /∈ Ωε) and
a false negative (where ỹ /∈ Ωε but y ∈ Ωε), respectively. Hence, small values of Wfp and Wfn

correspond to at least one of the following cases. First, if the low-fidelity and high-fidelity
models are closely correlated, then the probability of a false positive or false negative is small.
This demonstrates the value of coupling the models, as described in subsection 2.3. Second,
for small values of Wfp and Wfn we require q to be larger than π in regions of parameter
space where false positives or false negatives are relatively likely. We can interpret this as a
requirement that (in addition to q being concentrated in regions of high posterior density) the
region of parameter space where simulations of the low-fidelity and high-fidelity model are
less often in agreement (in terms of membership of Ωε) should be explored more thoroughly
by q than by π.

4.2. Constructing continuation probabilities. There is an important barrier to imple-
menting Proposition 4.4 as a method for choosing optimal continuation probabilities. Before
running any ABC iterations, and in the absence of extensive analysis of the models being
simulated, the quantities in (4.3) are unknown. We therefore cannot directly construct the
optimizers in (4.4) and (4.5). However, recall that we are aiming to use this method in the
context of sequential Monte Carlo to adaptively produce continuation probabilities. In Al-

gorithm 3.1, at each generation t ≥ 1, we have a sample {θ(t)
n , w

(t)
n } that is used to produce

r̂t+1. The proposed approach to constructing continuation probabilities is similar: we will
use the same Monte Carlo sample to also produce approximately optimal values of η1 and η2

defining the continuation probability αt+1 to use at generation t+ 1. The following definition
specifies how to calculate approximations of the quantities in (4.3) using an existing Monte
Carlo sample. These approximations can then be substituted into (4.4) and (4.5). Hence, we
can estimate the optimal continuation probabilities as given by Proposition 4.4.D
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Definition 4.5. Consider a Monte Carlo sample {θn, wn}Nn=1 constructed from a run of
Algorithm 2.3, which used the importance distribution q̂(θ) proportional to q(θ) and contin-
uation probability α(θ, ỹ). For the set of low-fidelity simulations {ỹn}Nn=1 and high-fidelity
simulations {yn}n∈M , where M = {n : yn exists}, store the simulation times, t̃n = T (ỹn)
and tn = T (yn); the distances from data, d̃n = d(ỹn, yobs) and dn = d(yn, yobs); the importance
densities qn = q(θn); and the continuation probabilities αn = α(θn, ỹn).

We now consider finding the optimal continuation probability, α?, to be used in a new run
of Algorithm 2.3, with the new importance distribution, q?(θ), and the new ABC threshold, ε.
We define the Monte Carlo estimates,

Ẑ =
1

N

[
N∑
n=1

π(θn)

qn
I(d̃n < ε) +

∑
n∈M

π(θn)

qnαn

(
I(dn < ε)− I(d̃n < ε)

)]
,(4.6a)

Ŵ =
1

N

[
N∑
n=1

π(θn)2

q?(θn)qn
I(d̃n < ε) +

∑
n∈M

π(θn)2

q?(θn)qnαn

(
I(dn < ε)− I(d̃n < ε)

)]
,(4.6b)

Ŵfp =
1

N

∑
n∈M

π(θn)2

q?(θn)qnαn
I(d̃n < ε)I(dn ≥ ε),(4.6c)

Ŵfn =
1

N

∑
n∈M

π(θn)2

q?(θn)qnαn
I(d̃n ≥ ε)I(dn < ε),(4.6d)

T̂lo =
1

N

N∑
n=1

q?(θn)

qn
t̃n,(4.6e)

T̂hi,p =
1

N

∑
n∈M

q?(θn)

qnαn
I(d̃n < ε)tn,(4.6f)

T̂hi,n =
1

N

∑
n∈M

q?(θn)

qnαn
I(d̃n ≥ ε)tn,(4.6g)

corresponding to the quantities in (4.3).

The estimates in (4.6) are scaled Monte Carlo estimates of the quantities in (4.3), such
that the approximation

ψ(η1, η2) =
Z2

φ(η1, η2)
≈ Ẑ2

φ̂(η1, η2)

holds, with

(4.7) φ̂(η1, η2) =

(
Ŵ +

(
1

η1
− 1

)
Ŵfp +

(
1

η2
− 1

)
Ŵfn

)(
T̂lo + η1T̂hi,p + η2T̂hi,n

)
.

Thus, we can substitute the estimates in (4.6) into (4.4) and (4.5). Applying Proposition 4.4
with these estimates thus provides near-optimal continuation probabilities for the new run of
Algorithm 2.3, constructed from the existing Monte Carlo sample.

Note 4.6. The Monte Carlo estimates in (4.6) are not independent of each other, so there
is a bias in the approximation Ẑ2/φ̂. Hence, the continuation probabilities (η?1, η

?
2) returned

by Proposition 4.4, if using the estimates in (4.6), can only be near-optimal.D
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4.3. Adaptive MF-ABC-SMC algorithm. Algorithm 3.1 presents an MF-ABC-SMC algo-
rithm that relies on a predetermined sequence of continuation probability functions, αt(θ, ỹ).
In subsections 4.1 and 4.2, we have shown how to use an existing Monte Carlo sample to
produce continuation probabilities of the form

αt(θ, ỹ) = η1I(ỹ ∈ Ωεt) + η2I(ỹ /∈ Ωεt),

where the values of η1 and η2 are chosen according to Proposition 4.4, in order to (approxi-
mately) optimize the efficiency of generating a sample from Algorithm 2.3. This result allows
us to write an adaptive MF-ABC-SMC algorithm that uses the Monte Carlo output of Algo-
rithm 2.3 at generation t to construct not just an importance distribution, r̂t+1(θ), but also a
continuation probability, αt+1(θ, ỹ), for use in the next generation.

Algorithm 4.1 (MF-ABC-SMC) is an adaptive multifidelity sequential Monte Carlo al-
gorithm for ABC parameter inference. In place of the predefined continuation probabilities
αt used in Algorithm 3.1 (MF-ABC-SMC-α), we instead only require an initial continuation
probability, most sensibly set to α1 ≡ 1, and the two lower bounds, ρ1 and ρ2, on the allowed
values of the continuation probabilities. Since the final sample is generated by a run of Algo-
rithm 2.3, by Proposition 2.1 it follows that the weighted sample is from the ABC posterior,
pε(θ | yobs).

Algorithm 4.1 Multifidelity ABC-SMC (MF-ABC-SMC)

Input: Data yobs; sequence of nested neighborhoods ΩεT ⊆ ΩεT−1 ⊆ · · · ⊆ Ωε1 for 0 <

ε = εT < εT−1 < · · · < ε1; prior π; coupling f̌(·, · | θ) of models f(· | θ) and f̃(· | θ);
initial importance distribution r̂1 (often set to π); initial continuation probability α1 ≡ 1;
lower bounds on continuation probabilities, ρ1, ρ2 ∈ (0, 1); perturbation kernels Kt(· | θ);
stopping conditions St, where t = 1, . . . , T .

Output: Weighted sample {θ(T )
n , w

(T )
n }NTn=1.

1: for t = 1, . . . , T − 1 do

2: Produce {θ(t)
n , w

(t)
n }Ntn=1 from Algorithm 2.3 (MF-ABC-IS), using the neighborhood Ωεt ,

continuation probability αt, importance distribution r̂t, and stopping condition St.
Store simulation times, distances, importance densities, and continuation probabilities
as specified in Definition 4.5.

3: Set ŵ
(t)
n = |w(t)

n | for n = 1, . . . , Nt.
4: Define r̂t+1 proportional to rt+1 given in (3.1).
5: Update the estimates in (4.6) with the values stored at step 2, using importance distri-

bution rt+1(θ) and ABC threshold εt+1.
6: Calculate (η?1, η

?
2) using Proposition 4.4 with lower bounds ρ1, ρ2.

7: Set αt+1(ỹ, θ) = η?1I(ỹ ∈ Ωε) + η?2I(ỹ /∈ Ωε).
8: end for
9: Produce {θ(T )

n , w
(T )
n }NTn=1 from Algorithm 2.3, using neighborhood ΩεT , continuation prob-

ability αT , importance distribution r̂T , and stopping condition ST .

Note 4.7. In common with the nonadaptive Algorithm 3.1 (MF-ABC-SMC-α), the impor-

tance weights rt(θ
(t)
n ) are required to construct the weights w

(t)
n in step 2, each of which isD
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an O(N) calculation. However, each calculation of rt+1(θ
(t)
n ) required in step 5 is also O(N).

Thus, there is extra cost at each generation on the order O(N2). However, in common with
Note 3.1, we will assume that this cost is justified by our aim to reduce the large simulation
burden that dominates the algorithm’s run time.

5. Example: Kuramoto oscillator network. To demonstrate the multifidelity and SMC
approaches to parameter inference, we will infer the parameters of a Kuramoto oscillator model
on a complete network, with stochastic heterogeneity in each node’s intrinsic frequency. In
subsection 5.1, we consider the performance of the previously developed ABC algorithms intro-
duced in section 2 (ABC-RS, ABC-SMC, and MF-ABC-RS) and demonstrate the orthogonal
ways in which the SMC and multifidelity techniques improve performance. In subsection 5.2,
we apply the adaptive algorithm, Algorithm 4.1 (MF-ABC-SMC), to demonstrate that the
efficiency of parameter estimation is significantly improved by combining the multifidelity and
SMC approaches. The algorithms have been implemented in Julia [4], and the source code is
available online from https://github.com/tpprescott/mf-abc-smc.

The Kuramoto oscillator model is defined on a complete network of M nodes, where each
node, i, has a dynamically evolving phase value, φi, determined by the ODE

(5.1) φ̇i = ωi +
K

M

M∑
j=1

sin (φj − φi)

for i = 1, . . . ,M . Each constant ωi, the intrinsic angular velocity, is an independent draw
from a Cauchy distribution with median ω0 and dispersion parameter γ. In addition to these
two parameters, we have an interconnection strength K. Simulations of the ODE system are
run over a fixed time interval t ∈ [0, T ], and we will assume fixed initial conditions φi(0) = 0
for all i.

The multifidelity approach makes use of a low-dimensional approximation of the coupled
oscillator dynamics, as described in [13, 21, 22]. The approximation is based on tracking
the Daido order parameters, which are a set of complex-valued representations of the high-
dimensional vector (φi)

M
i=1, defined as

Zn(t) =
1

M

M∑
j=1

exp(inφj)

for positive integers n and the imaginary unit i. A system of coupled ODEs can be generated
for the set of Zn. Under the assumption that Zn(t) = Z1(t)n, known as the Ott–Antonsen
ansatz [13, 21], the system can be reduced to a single ODE for Z1, which is known as the
Kuramoto parameter. This complex-valued trajectory is usually represented by two real
trajectories, corresponding to its magnitude R(t) = ‖Z1(t))‖ and phase Φ(t) = arg(Z1(t)).
The approximation of the M -dimensional ODE system in (5.1) under the OA ansatz is thus
given by the two-dimensional ODE system

˙̃R =

(
K

2
− γ
)
R̃− K

2
R̃3,(5.2a)
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(a) Magnitude: R(t) (b) Phase: Φ(t)

Figure 5.1. In color are five trajectories for R(t) and Φ(t) for the high-fidelity model in (5.1). Stochasticity
arises from sampling ωi ∼ Cauchy(ω0, γ) for i = 1, . . . , 256. In black is the deterministic trajectory from the
low-fidelity model in (5.2). All simulations were completed using parameters K = 2, ω0 = π/3, and γ = 0.1.
Note that the phase plot “unwraps” the trajectories of Φ(t) = arg(Z1(t)) to avoid 2π-discontinuities.

˙̃Φ = ω0,(5.2b)

with initial conditions (R̃(0), Φ̃(0)) = (1, 0), which directly simulates the low-dimensional
representation of the M -dimensional state vector.

The goal of this example is to infer the parameters (K,ω0, γ) based on synthetic data,
generated by simulating a system of M = 256 oscillators with random angular velocities
ωi over t ∈ (0, 30]. We record the trajectories Robs(t) and Φobs(t) of the magnitude and
phase of the Kuramoto parameter. The parameter values used to generate these data are
(K = 2, ω0 = π/3, γ = 0.1). The likelihood of the observed data under the model in (5.1)
with stochastic parameters ωi ∼ Cauchy(ω0, γ) is unavailable, and we must therefore resort
to ABC inference, requiring repeated simulation.

Example trajectories of the high-fidelity and low-fidelity models in (5.1) and (5.2) are
given in Figure 5.1. The trajectories Robs(t), Φobs(t), R(t), Φ(t), R̃(t), and Φ̃(t) on t ∈ [0, 30]
are infinite dimensional. In order to easily compare trajectories, we will select a finite number
of informative summary statistics from the trajectories, guided by the approximated system
in (5.2). We take

S1(R,Φ) =

(
1

30

∫ 30

0
R(t) dt

)2

,

S2(R,Φ) =
1

30
(Φ(30)− Φ(0)) ,

S3(R,Φ) = R
(
T1/2

)
,

where T1/2 is the first value of t ∈ [0, 30] for which Robs(t) is halfway between Robs(0) = 1 and

its average value S1(Robs,Φobs)
1/2. Justification for the choice of these summary statistics

and distances is provided in section SM2 of the supplementary materials.
Simulation of the high-fidelity model produces y ∼ f(· | (K,ω0, γ)) by (a) generating ωi,

i = 1, . . . , 256, from Cauchy(ω0, γ), then (b) simulating the ODE system in (5.1), and then (c)D
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Table 5.1
Comparing existing ABC algorithms for sampling p0.5((K,ω0, γ) | yobs) based on a uniform prior, using ε =

0.5. The stopping condition for Algorithms 2.1 and 2.3 is N = 6000. The threshold schedule for Algorithm 2.2 is
(2, 1.5, 1, 0.5) with stopping conditions St of Nt = 1500 parameter proposals for t = 1, 2, 3, 4, leading to the same
total number of parameter proposals as Algorithms 2.1 and 2.3. The perturbation kernels Kt in Algorithm 2.2
are Gaussian with diagonal covariance equal to twice the empirical variance of the sample at generation t [3].
The continuation probability used in Algorithm 2.3 is fixed at the constant α ≡ 0.5. Percentages refer to the
increase in efficiency over the base efficiency of ABC-RS.

Algorithm ESS Sim. time (min) Efficiency (ESS min−1)

Algorithm 2.1 (ABC-RS) 148.0 43.6 3.39
Algorithm 2.2 (ABC-SMC) 255.1 48.8 5.23 ×1.54
Algorithm 2.3 (MF-ABC-RS) 126.4 22.9 5.52 ×1.63

computing y = (S1(R,Φ), S2(R,Φ), S3(R,Φ)). Simulation of the low-fidelity model produces
ỹ ∼ f̃(· | (K,ω0, γ)) by (a) simulating the ODE system in (5.2), and then (b) computing ỹ =
(S1(R̃, Φ̃), S2(R̃, Φ̃), S3(R̃, Φ̃)). The distances d(y, yobs) and d(ỹ, yobs) are defined according to
the weighted Euclidean norm, d(a, b)2 = 4(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2. Note that the
low-fidelity model is deterministic. Therefore, there is no meaningful definition of a coupling
between the models at each fidelity: any simulation y ∼ f(· | ỹ, (K,ω0, γ)) = f(· | (K,ω0, γ))
from the high-fidelity model will be independent of ỹ.

5.1. Existing ABC algorithms. We set independent uniform priors on [1, 3], [−2π, 2π],
and [0, 1] for K, ω0, and γ, respectively. Using the uniform prior as importance distributions,
samples from the ABC posterior, p0.5((K,ω0, γ) | yobs), are produced using Algorithm 2.1
(ABC-RS), Algorithm 2.2 (ABC-SMC), and Algorithm 2.3 (MF-ABC-RS) with ε = 0.5. The
continuation probability used in Algorithm 2.3 (MF-ABC-RS) is the constant α ≡ 0.5. The
resulting samples are depicted in Figures SM3.1 to SM3.3. Table 5.1 shows the observed values
for the performance of each of these algorithms, quantified in terms of ESS, total simulation
time, and observed efficiency (i.e., the ratio of the first two). Note that the ESS of the sample

from Algorithm 2.2 (ABC-SMC) depends on only N4 = 1500 weights, w
(4)
n , corresponding to

the final generation. However, we will measure the observed efficiency by using the total time
to simulate, which includes the total simulation time of the preceding generations.

Even with minimal tuning of Algorithms 2.2 and 2.3, the samples built using these algo-
rithms both show significant improvements in efficiency. We have chosen stopping conditions
to ensure an equal number of parameter proposals for each algorithm, in order to demonstrate
the distinct effects of each. Algorithm 2.2 (ABC-SMC) produces a larger ESS for a similar
simulation time. This is characteristic of ABC-SMC, whereby parameters with low likeli-
hood are less likely to be proposed. However, Algorithm 2.3 (MF-ABC-RS) instead speeds
up the simulation time of the fixed number of parameter proposals, albeit with some damage
to the ESS. This result illustrates the orthogonal effects of the SMC and multifidelity ABC
algorithms, and thus the potential for combining the techniques in Algorithm 4.1 to produce
further gains in efficiency.

The key to the success of MF-ABC-RS and the multifidelity approach in general is the
assumption that the low-fidelity model is cheaper to simulate than the high-fidelity model. InD
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this case, the high-fidelity model in (5.1) has a mean (respectively, standard deviation) simu-
lation time of approximately 520 (638) µs to simulate, while the low-fidelity model in (5.2) has
a simulation time of approximately 10 (12) µs. Note that these averages and standard devia-
tions are observed across the uniform distribution of parameter values on the intervals [1, 3],
[−2π, 2π], and [0, 1] for K, ω0, and γ, respectively. The relatively large standard deviations
imply that parameter proposals in this domain can produce very different simulation times.
Different importance distributions will therefore vastly alter the relative simulation costs of
the high-fidelity and low-fidelity models.

5.2. Multifidelity ABC-SMC. In order to demonstrate the increased efficiency of com-
bining multifidelity approaches with SMC, we produced 100 samples from the ABC posterior,
p0.1((K,ω0, γ) | yobs), consisting of 50 replicates from each of Algorithm 2.2 (ABC-SMC) and
Algorithm 4.1 (MF-ABC-SMC). Common to both algorithms is the number of generations,
T = 8, which corresponds to the nested sequence of ABC neighborhoods Ωεt with the sequence
of thresholds 2.0, 1.5, 1.0, 0.8, 0.6, 0.4, 0.2, and 0.1. Each generation has a stopping condition
of ESS ≥ 400, evaluated after every 100 parameter proposals (to allow for parallelisation).
This condition reflects a specification that we need each generation’s sample to be, in some
sense, “good enough” to produce a reliable importance distribution that can be used in the

next generation. Finally, we specified the perturbation kernels Kt(· | (K,ω0, γ)
(t)
n ) at each

generation to be Gaussians centered on the parameter value (K,ω0, γ)
(t)
n . The covariance

matrices are diagonal matrices diag(σ
(t)
K , σ

(t)
ω0 , σ

(t)
γ ), where

(σ
(t)
K )2 = 2

∑
|w(t)
n |(K(t)

n − µ(t)
K )2∑

|w(t)
n |

,

µ
(t)
K =

∑
|w(t)
n |K(t)

n∑
|w(t)
n |

,

and similarly for σ
(t)
ω0 and σ

(t)
γ . These perturbation kernels implement a typical choice for the

covariance of using twice the empirical variance of the observed parameter values [3, 12]. Note

that we use this definition for the multifidelity case also, where weights w
(t)
n may be negative,

since we are using the ρt (as defined in (3.2)) and not the pεt as the target distributions.
Further to these common inputs, the parameters ρ1 and ρ2 are the only additional algorithm
parameters we need to specify to implement Algorithm 4.1 (MF-ABC-SMC). We set lower
bounds of ρ1 = ρ2 = 0.01 on the allowed continuation probabilities, with the aim to limit the

variability of w
(t)
n to prevent the collapse of the ESS.

5.2.1. Multifidelity ABC-SMC increases observed efficiency. Algorithms 2.2 and 4.1
were implemented and run using Julia 1.5.1 on a 36 core CPU (2 × 18 core with hyperthread-
ing), 2.3/3.7 GHz, 768 GB RAM. Table 5.2 quantifies the average performance for each of
Algorithms 2.2 and 4.1, separated out for each generation from t = 1, . . . , 8 and also across
the entire SMC algorithm. The final row of this table demonstrates that Algorithm 4.1 (MF-
ABC-SMC) results in a 60% saving in the total simulation time required to produce a final
sample from the ABC posterior p0.1 with an ESS of approximately 400. This corresponds to
an efficiency 2.48 times that of Algorithm 2.2 (ABC-SMC). This performance improvementD
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Table 5.2
Row t shows empirical mean values for 50 ABC-SMC samples and 50 MF-ABC-SMC samples of (a) the

simulation time divided by the number, Nt, of parameter proposals in generation t; (b) the simulation time in
generation t; (c) ESS divided by simulation time in generation t. The final row is the empirical mean values
for each sample of (a) the total simulation time divided by the total number,

∑
tNt, of parameter proposals;

(b) the total simulation time; (c) ESS from generation 8 divided by total simulation time (all generations). The
third columns for each of (a), (b), and (c) quantify the improvement in performance of MF-ABC-SMC over
ABC-SMC.

a. Sim. time / proposal b. Simulation time c. Efficiency
µs min ESS s−1

t ABC MF-ABC ABC MF-ABC ABC MF-ABC

1 537 530 −1% 13.6 13.4 −2% 0.51 0.52 ×1.01
2 675 31 −95% 11.2 1.3 −88% 0.63 8.35 ×13.4
3 665 33 −95% 15.2 2.0 −87% 0.46 4.41 ×9.59
4 599 35 −94% 11.6 1.9 −84% 0.60 4.99 ×8.26
5 525 35 −93% 11.3 2.2 −81% 0.62 3.99 ×6.47
6 424 36 −92% 10.8 2.6 −76% 0.64 2.90 ×4.53
7 330 46 −86% 13.6 6.0 −56% 0.50 1.16 ×2.31
8 268 80 −70% 15.5 11.8 −24% 0.43 0.57 ×1.31

SMC 449 65 −85% 102.9 41.2 −60% 0.066 0.163 ×2.48

is derived from an 85% saving in the simulation time required for each parameter proposal
when averaged across the entire SMC algorithm.

Figure 5.2 depicts 100 estimates of the posterior mean of each of the parameters, Ep0.1(K),
Ep0.1(ω0), and Ep0.1(γ), constructed from the 50 samples generated by each of Algorithms 2.2
and 4.1. This figure demonstrates that the estimates generated by the multifidelity algo-
rithm, MF-ABC-SMC, are of a quality similar to those produced by ABC-SMC.1 Taking K,
ω0, and γ in turn, the means of the 50 estimates produced by each algorithm are, to three
significant figures, indistinguishable at 2.17, 1.06, and 0.125. Similarly, the variability of
these estimates are also broadly similar: Algorithm 2.2 (respectively, Algorithm 4.1) produces
estimates with standard deviations .0268 (.0277), .0034 (.0027), and .00271 (.00265). Impor-
tantly, the distribution of total simulation times for each of these 100 estimates demonstrates
that MF-ABC-SMC is reliably significantly less computationally expensive than ABC-SMC
to produce comparable samples, with the average simulation times reflecting the 60% saving
identified in Table 5.2.

Recall our initial observation that the average simulation time of the low-fidelity model, 10
µs, is approximately 2% of that of the high-fidelity model, 520 µs, with expectations taken over
the prior. Given this initial difference in each model’s average simulation time, the observed
148% increase in efficiency from Algorithm 2.2 to Algorithm 4.1 is determined by a number
of other factors specific to the characteristics of SMC sampling, which we now explore.

5.2.2. MF-ABC-SMC is more effective in early generations. In producing the samples
summarized in Table 5.2 and Figure 5.2, we enforced the same decreasing schedule of εt and

1In addition to the observation of the posterior means in Figure 5.2, we have also depicted representative
posterior samples from each algorithm in Figures SM3.4 and SM3.5.D
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MULTIFIDELITY ABC-SMC 809

Figure 5.2. The empirical posterior means of each of K, ω0, and γ for each of the 100 samples, plotted
against the total simulation time required to generate each mean.

the same stopping criteria (ESS ≥ 400) for all runs of both Algorithm 2.2 (ABC-SMC) and
Algorithm 4.1 (MF-ABC-SMC). This allows a direct comparison between the two algorithms of
the efficiencies at each generation, in addition to their overall performance. Figure 5.3 depicts
the distributions of each of the measures for which the means are given in Table 5.2. As the
generation index varies, there are significant differences between the performance improvement
generated by MF-ABC-SMC over ABC-SMC. By all three of the measures, the benefit of MF-
ABC-SMC appears to accrue most significantly in the earlier generations. There are a number
of factors that explain these observed differences.

First, we observe that the average simulation time per proposal of Algorithm 2.2 (ABC-
SMC) decreases as t increases. As the importance distribution evolves towards the posterior
through the SMC algorithm, the most expensive high-fidelity simulations are required much
less often. This means that the relative saving of using the low-fidelity model also evolves
with the generation, t. The continuation probabilities used in Algorithm 4.1 (MF-ABC-SMC)
aim to balance the saving in simulation cost against the probability of false positives and false
negatives, according to the optima in (4.4). Since there is less computational cost available to
save in later generations, we therefore find larger continuation probabilities. Figure 5.4 shows
how the values of η1 and η2 vary for each of the 50 instances of Algorithm 4.1 (MF-ABC-
SMC) across generations t = 2, 4, 6, 8, reflecting the adaptation of the algorithm to changing
distributions in simulation costs. Values in the bottom-left of the figure correspond to smaller
continuation probabilities and thus smaller total simulation times. At t = 8, the optimal
continuation probabilities are no longer clustered to the bottom-left of the figure, but instead
have begun to migrate to the (1, 1) corner, which corresponds to the classical ABC-SMC
approach. This leads to the increase in simulation time per proposal for MF-ABC-SMC at
generation t = 8, as more high-fidelity simulations are required.

Second, we observe that for generation t = 8 we have an average of 70% improvement in
simulation time per proposal but only a 24% average improvement in the generation’s total
simulation time. It follows that MF-ABC-SMC requires approximately 2.5 times as many
parameter proposals, on average, in the final generation to produce an ESS of at least 400
when compared with ABC-SMC, meaning that only a 30% improvement in efficiency can be
found. Thus, the final generation incurs over a quarter of the total simulation cost of MF-
ABC-SMC, on average. The improved efficiency at the final generation is relatively smallD
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810 T. P. PRESCOTT AND R. E. BAKER

Figure 5.3. Observed distributions of simulation time per proposal, total simulation time, and efficiency
for 50 samples from Algorithm 2.2 (ABC-SMC, blue) and 50 samples from Algorithm 4.1 (MF-ABC-SMC,
orange). Left: Summarized at each SMC generation. Right: Aggregated across all eight generations. Means of
each observed distribution are given in Table 5.2.

because at smaller ABC thresholds the inaccuracy of the low-fidelity model becomes more
significant. In this example, the underlying stochasticity of the high-fidelity model means
that the probability P(y ∈ Ω0.1 | ỹ ∈ Ω0.1) is sufficiently small to produce a high false positive
rate, corresponding to a relatively large value of Wfp in Lemma 4.2. This reduces the optimal
available efficiency towards that of classical ABC-SMC. It should be noted that a strength of
the adaptive method of selecting continuation probabilities is that this case can be detected,
so that the efficiency of Algorithm 4.1 (MF-ABC-SMC) is bounded below by the efficiency of
Algorithm 2.2 (ABC-SMC).

Finally, note that the sequence of εt was chosen to be equal across ABC-SMC and MF-
ABC-SMC to allow for a direct comparison between the efficiencies at each generation. ThisD
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MULTIFIDELITY ABC-SMC 811

Figure 5.4. Estimated values of the optimal continuation probabilities α = η1I(ỹ ∈ Ωεt)+η2I(ỹ /∈ Ωεt) used
to produce the multifidelity sample for each of the 50 replicates of generations 2, 4, 6, and 8.

constraint produced an overall 60% saving in simulation time and a 148% increase in efficiency.
However, in practice, we should also aim to adaptively choose the sequence εt (for either algo-
rithm) to optimize performance. In the following subsection, we describe how incorporating
the adaptive selection of εt based on the preceding generations’ output allows for a better
comparison between the two algorithms.

5.2.3. MF-ABC-SMC reduces ABC approximation bias. Implementing Algorithm 4.1
(MF-ABC-SMC) requires a decreasing sequence of εt values to be prespecified. Often, ap-
propriate values of εt cannot be determined before any simulations have been generated. If
the sequence of εt decreases too slowly, then the algorithm will take a long time to reach the
target posterior; if too quickly, then acceptance rates will be too low. As a result, rather
than specifying a sequence of thresholds a priori, previous work in the SMC context [8] has
explored choosing εt+1 by predicting its effect on the ESS of that generation. In the spirit of
this approach, we adaptively choose the sequence εt by predicting its effect on the efficiency
of that generation, as defined in Lemma 4.1.

Figure 5.5 depicts a possible strategy for choosing εt+1 conditionally on the output from
generation t in ABC-SMC and MF-ABC-SMC. The key to this strategy is the observation that
the efficiency of Algorithm 2.3, defined by (4.2) and (4.3), depends on the ABC threshold,
ε, and the importance distribution, q̂, used in Algorithm 2.3. By writing the efficiency as
ψ(η1, η2; ε, q̂) and fixing η1, η2, and q̂, we can consider the efficiency of Algorithm 2.3 as a
function of ε. In particular, by setting η1 = η2 = 1, the efficiency of Algorithm 2.1, ψ(1, 1; ε, q̂),
also varies with ε. We assume that at each generation we have a target efficiency, ψ?t that
enables a given ESS to be generated with a known computational budget.

In generation t of Algorithm 4.1 (MF-ABC-SMC), we produce the sample {θ(t)
n , w

(t)
n }

from Algorithm 2.3 (MF-ABC-IS), which can used to define an importance distribution, r̂t+1.D
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(a) Adaptive ABC-SMC. (b) Adaptive MF-ABC-SMC.

Figure 5.5. Adaptively selecting εt to achieve a predicted target efficiency equal to the efficiency of the first
generation. Curves plot the estimated efficiency as a function of ε for (a) importance distributions q̂t, and (b)
importance distributions r̂t and associated optimized continuation probabilities. Stars plot observed efficiencies,
ESS/Ttot, against the selected value of εt.

Steps 5 and 6 of Algorithm 4.1 then use the next ABC threshold, εt+1, to calculate optimal
continuation probabilities (η?1, η

?
2) by maximizing the efficiency function, ψ(η1, η2; εt+1, r̂t+1).

In the case where εt+1 is unknown, an adaptive approach to finding an appropriate value is
to replace steps 5 and 6 of Algorithm 4.1 with the following subroutine:

a. find (η?1, η
?
2) to maximize the efficiency, ψ(η1, η2; εt, r̂t+1), using Proposition 4.4;

b. set ε? ← max
{

0 < ε ≤ εt : ψ(η?1, η
?
2; ε, r̂t+1) ≤ ψ?t+1

}
, or ε? ← εt if this set is empty;

c. set εt+1 ← ε? and continue to step 7 of Algorithm 4.1.
This procedure produces a sequence of ABC thresholds designed such that each generation’s
efficiency is maintained at a target level. It alternates between finding continuation probabil-
ities that maximize the efficiency at the preceding threshold, εt, and then finding a value of
εt+1 < εt such that the predicted efficiency matches the target. If εt+1 = εt, then the target
efficiency, ψ?t+1, needs to be reviewed, as it is not achievable. Note that for the case of ABC-
SMC, which is equivalent to MF-ABC-SMC with fixed continuation probabilities η1 = η2 = 1,
we skip the optimisation in step a and use η?1 = η?2 = 1 in step b.

The strength of the multifidelity approach in this context is that the additional degrees of
freedom afforded by the continuation probabilities allows for the ABC thresholds to decrease
more quickly, while maintaining a target efficiency at each generation. This benefit is depicted
in Figure 5.5. Each curve in the left-hand plot is the predicted efficiency ψ(1, 1; ε, q̂t+1) as a
function of ε. Each curve in the right-hand plot is the predicted efficiency ψ(η?1, η

?
2; ε, r̂t+1),

again as a function of ε, where we have found optimal continuation probabilities, (η?1, η
?
2).

For each algorithm, we choose the target efficiency at each generation t > 1 to equal the
efficiency observed in generation 1. Figure 5.5a demonstrates the adaptive threshold selec-
tion implemented for four generations of Algorithm 2.2 (ABC-SMC), producing a decreasing
sequence for εt of 2 > 1.21 > 0.83 > 0.51. In comparison, Figure 5.5b shows how the adap-
tive selection of thresholds in Algorithm 4.1 (MF-ABC-SMC) produces a sequence for εt of
2 > 0.62 > 0.23 > 0.11. Clearly, the adaptive sequence of εt enabled by MF-ABC-SMC
decreases much more quickly than the equivalent sequence for ABC-SMC, while the efficiencyD
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MULTIFIDELITY ABC-SMC 813

of each generation remains broadly constant and predictable.
In our example, each generation has a stopping condition of ESS ≥ 400. As a result, by

choosing to specify a constant target efficiency equal to the observed efficiency of generation
t = 1, we effectively impose a constant target simulation budget for each generation. Since
(for the example in Figure 5.5) we have specified four generations for each run of the adaptive
versions of Algorithms 2.2 and 4.1, we have thus specified a fixed, equal total simulation time
for each algorithm. In this setting, the results in Figure 5.5 show that the bias incurred
by using an ABC approximation to the posterior with threshold ε > 0 is vastly reduced by
implementing the multifidelity approach to SMC. Using MF-ABC-SMC, the sample produced
in generation 4 is from p0.11(θ | yobs), while ABC-SMC can only produce a sample from
p0.51(θ | yobs) for a similar computational cost. Thus, by incorporating the multifidelity
approach into a method for adaptively selecting ABC thresholds, we can afford to allow the
sequence εt of MF-ABC-SMC thresholds to decrease much more rapidly, at no cost to the
efficiency of the algorithm.

6. Discussion and conclusions. In this work, we have examined how to integrate two
approaches to overcoming the computational bottleneck of repeated simulation within ABC:
the SMC technique for producing parameter proposals, and the multifidelity technique for
using low-fidelity models to reduce overall simulation time. By combining these approaches,
we have produced the MF-ABC-SMC algorithm in Algorithm 4.1.

The results in section 5 demonstrate that the efficiency of sampling from the ABC posterior
(measured as the ratio of the ESS to simulation time) can be significantly improved by using
Algorithm 4.1 (MF-ABC-SMC) in place of Algorithm 2.2 (ABC-SMC). This improvement was
demonstrated by using a common schedule of decreasing ABC thresholds for both algorithms.
In this case, the increase in efficiency was most significant during the early SMC generations,
where both the average simulation time of the high fidelity model and the overall acceptance
rates are relatively large. By also implementing an adaptive ABC thresholding scheme into
both algorithms and thus allowing different sequences of ABC threshold, MF-ABC-SMC is
shown to greatly reduce the bias incurred by using an ABC approximation to the posterior,
in comparison to ABC-SMC.

Having introduced the MF-ABC-SMC algorithm, a number of open questions emerge.
Some of these questions are specific to the implementation of multifidelity approaches. How-
ever, others arise from a re-evaluation of SMC implementation strategies in this new context.
Below, we consider these two classes of questions in turn.

6.1. Multifidelity implementation. The key to maximizing the benefit of MF-ABC-SMC
is the ability to set a continuation probability based on the simulations generated during pre-
ceding generations. The estimates in (4.6) of the quantities in (4.3) are natural Monte Carlo
approximations to the required integrals. In the SMC context, when generating the continu-
ation probability for generation t + 1, each of these estimates could actually be constructed
using the parameter proposals, importance weights, simulations, distances, and continuation
probabilities of any (or all) generations 1 ≤ s ≤ t, not just generation t. Future work should
clarify how best to combine many generations’ samples into estimates of (4.3) and the potential
for improvement that might arise from this.

Another question arises when we break the assumption made at the start of subsectionD
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814 T. P. PRESCOTT AND R. E. BAKER

2.3 and no longer assume that the output spaces of each model fidelity are such that Ỹ = Y.
In general, the observed data, ỹobs 6= yobs, the distance metrics, d̃(ỹ, ỹobs) 6= d(y, yobs), and
the thresholds, ε̃ 6= ε, may all be distinct. In this case, any estimate, w̃, of I(y ∈ Ωε) can be
used in place of I(ỹ ∈ Ωε) to give a multifidelity acceptance weight of the form

w(θ, ỹ, u, y) = w̃(θ, ỹ) +
I(u < α(θ, ỹ))

α(θ, ỹ)
(I(y ∈ Ωε)− w̃(θ, ỹ)) .

Note that, in the case of equal output spaces, we might consider using w̃(yn) = I(ỹ ∈ Ωε̃)
for distinct thresholds, ε̃ 6= ε. However, in general, w̃(θ, ỹ) may also encompass completely
different output spaces based on distinct modeling frameworks for the same system (albeit
with the same parameter space). In a way similar to evolving acceptance probabilities across
generations, we could also evolve the estimate w̃ across generations, using the information
gathered from repeated simulation of both high-fidelity and low-fidelity models to better
approximate I(y ∈ Ωε) and thus reduce our reliance on the high-fidelity model.

The form of continuation probability, α(θ, ỹ), defined in (4.1) implements a multifidelity
algorithm that provides a single continuation probability for ỹ ∈ Ωε and another for ỹ /∈
Ωε, independently of the parameter value. There may be significant improvements to the
multifidelity approach available through making α(θ, ỹ) depend more generally on θ and ỹ.
For example, it is probable that there should be less need to simulate y after generating ỹ such
that d(ỹ, yobs) � ε than if d(ỹ, yobs) = 1.01ε. However, with α as defined in (4.1), these two
cases are treated equally. There is likely to be significant potential for improved performance
from exploring less simplistic forms for the continuation probability.

Finally, as has been noted in previous work on multifidelity ABC [28], there is much po-
tential in being able to use multiple low-fidelity models, beyond a single low-fidelity approx-
imation. If there exist multiple low-fidelity models, different generations of MF-ABC-SMC
may allow us to progressively focus on using the most efficient model, and identify the specific
regions of parameter space for which one model or another may bring the most benefit for
parameter estimation.

6.2. SMC implementation. Previous research into the implementation of ABC-SMC has
ensured that the importance distribution formed from the preceding generation, as given in
(2.4), is optimal, by choice of the perturbation kernels, Kt [12]. This has typically been
treated as a requirement to trade off a wide exploration of parameter space against a high
acceptance rate. We have replaced the acceptance rate by the theoretical efficiency as the
quantification of an ABC algorithm’s performance. Therefore, since we now explicitly include
the simulation time in the definition of the algorithm’s performance, the perturbation kernels
that optimize the tradeoff between efficiency and exploration may be reformulated, and hence
different optima may be used.

In subsection 5.2, we applied a widely used strategy for determining the perturbation
kernels [3]. This strategy has been justified only in the context of positive weights and an
importance distribution that approximates the ABC posterior. However, the importance
distribution used in MF-ABC-SMC potentially makes this choice of perturbation kernels sub-
optimal. It remains to extend existing results on the optimality of perturbation kernels, such
as those in [12], to apply to importance distributions of the form in (3.1) that approximateD
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the alternative target distribution in (3.2). There is therefore justification for reopening the
question of specifying optimal perturbation kernels for SMC, in the context of both including
simulation time in the performance tradeoff and for dealing with multifidelity samples with
negative weights.

We have restricted the choice of SMC sampler to the O(N2) PMC sampler, due to the
effect of the O(N) sampler in diluting the benefits of the multifidelity approach, as discussed
in sections SM1 and 3. Although this choice can be justified when simulation times dominate
the algorithm, future work in this area should seek to optimize a multifidelity approach in the
context of the more efficient sampling technique. Given that the observed effect of multifidelity
ABC is to significantly reduce the simulation time per parameter proposal, and thereby make
the simulation cost at each iteration much less dominant, this extension will be necessary to
ensure optimal performance of MF-ABC-SMC in larger sample sizes.

In subsection 5.2.3, we described how to adapt Algorithms 2.2 and 4.1 to implement an
adaptive sequence of εt as an approach to minimizing bias for a fixed computational budget.
The strategy we used was to choose εt to maintain an efficiency as close as possible to a
target, set to equal the observed efficiency of the first generation. Further work in this area
should investigate the use of more sophisticated strategies for choosing each εt. This question
relates closely to the sequence of stopping criteria. In subsection 5.2, we constrained the
effective sample size at each generation to be at least 400 to ensure a relatively low variance in
each generation’s sample, but this choice was made arbitrarily. Future work should therefore
consider how to best achieve the ultimate goal of the SMC algorithm: a sample from a
final generation with minimal bias relative to the true posterior, with a small variance, and
constructed quickly. This goal should be achieved by optimizing the complex, interdependent
choices of stopping criteria, ABC thresholds, continuation probabilities, and perturbation
kernels.
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