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ABSTRACT Cell motility in response to environmental cues forms the basis of many developmental processes in multicellular
organisms. One such environmental cue is an electric field (EF), which induces a form of motility known as electrotaxis.
Electrotaxis has evolved in a number of cell types to guide wound healing and has been associated with different cellular pro-
cesses, suggesting that observed electrotactic behavior is likely a combination of multiple distinct effects arising from the pres-
ence of an EF. To determine the different mechanisms by which observed electrotactic behavior emerges, and thus to design
EFs that can be applied to direct and control electrotaxis, researchers require accurate quantitative predictions of cellular
responses to externally applied fields. Here, we use mathematical modeling to formulate and parameterize a variety of hypothet-
ical descriptions of how cell motility may change in response to an EF. We calibrate our model to observed data using synthetic
likelihoods and Bayesian sequential learning techniques and demonstrate that EFs bias cellular motility through only one of a
selection of hypothetical mechanisms. We also demonstrate how the model allows us to make predictions about cellular motility
under different EFs. The resulting model and calibration methodology will thus form the basis for future data-driven and model-
based feedback control strategies based on electric actuation.
SIGNIFICANCE Electrotaxis is attracting much interest and development as a technique to control cell migration
because of the precision of electric fields as actuation signals. However, precise control of electrotactic migration relies on
an accurate model of how cell motility changes in response to applied electric fields. We present and calibrate a
parameterized stochastic model that accurately replicates experimental single-cell data and enables the prediction of
input-output behavior while quantifying uncertainty and stochasticity. The model allows us to elucidate and quantify how
electric fields perturb the motile behavior of the cell. This model and the associated simulation-based calibration
methodology will be central to future developments in the control of electrotaxis.
INTRODUCTION

Cell migration underpins key physiological processes central
to developmental biology, as well as wound healing and tis-
sue regeneration, and it plays a crucial role in invasive, met-
astatic cancers. There are ongoing efforts to intervene in and
influence these phenomena to, for example, inhibit metastasis
(1) or accelerate wound healing (2). However, the cellular
processes driving collective migration are complex and
multifaceted, deriving from diverse physical mechanisms
and various external stimuli (3), making it challenging for
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researchers to accurately and robustly direct cell motility.
Because of the ease with which electric fields can be
controlled and applied to cells, research into the control of
cell motility has recently focused on exploiting electrotaxis
(also known as galvanotaxis) (3–5). However, the precise
effects of electric fields on intracellular processes and thus
on cell motility are not fully understood, making quantitative
predictions and control policy design impractical.

Electrotactic cells have been observed to change their
motile behavior in response to the presence of a direct cur-
rent (DC) electric field (EF) (3–7). Researchers seeking to
control cell motility exploit this phenomenon by applying
external electrical cues to cell populations (2,4–9). The
key advantages of using electrical cues to guide cell migra-
tion include the ability to exploit endogenous, evolved
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biological functionality to respond to precisely controllable
DC EFs. This compares favorably to using chemoattractants
to guide motility, as chemical signals experienced by the
cell cannot be so precisely or flexibly controlled, especially
dynamically, and chemoattractants are usually highly cell
specific. In contrast, light-directed motility allows for pre-
cise actuation signals. However, it requires sophisticated op-
togenetic manipulations of the cell population under control
(10). As such, EFs provide a relatively precise and simply
implemented actuation signal to achieve specified motile
behaviors.

Although an important strength of electrotactic cell con-
trol is that applying an EF for actuation is flexible enough to
apply to any electrotactic cell type, the precise signal to be
applied to achieve any specified goal needs to be carefully
calibrated. At the most basic level, even the direction of
migration within the same DC field has been shown to
vary across different cell types and within one cell type un-
der different experimental conditions (5,11). More broadly,
a large number of biochemical and biophysical mechanisms
have been implicated in the electrotactic response across
different cell types (3). Each electrotactic mechanism,
which may coexist in combination at unknown relative
strengths, may induce distinct observable effects on the dy-
namics of cellular motility. Overcoming this uncertainty in
the observable electrotactic response is a fundamental chal-
lenge for designing EFs to control cell motility.

Mathematical models are a vital tool for quantifying the
different ways in which cells can change their motility in
response to EFs (12–14). In this work, we describe a param-
eterized stochastic model of the motile behavior of a single
human corneal epithelial cell, in which the cell’s motility is
driven by an internal polarity in combination with the
external influence of a DC EF. We assume that the cell
can undergo both spontaneous and electrotactic polariza-
tion. The model allows us to describe mathematically four
distinct ways an EF may influence motility. We use experi-
mentally observed trajectories of single cells, both with and
without applied EFs, to calibrate the parameters of this
model, thereby quantifying the extent to which different as-
pects of cell motility are impacted by the EF. The resulting
calibrated model provides a vital first step toward being able
to design feedback control policies and provide robustness
guarantees, which are necessary if electrotaxis is to be
used to control cell motility in practical applications such
as wound healing or tissue engineering.
Single-cell modeling

The agent-based modeling framework used in this work fol-
lows standard modeling assumptions outlined in (13). Spe-
cifically, we model the evolution of the velocity of a
single cell in the overdamped regime so that cell velocity
is proportional to the sum of nonfrictional forces on the
cell. We provide full details on the mathematical model in
2 Biophysical Journal 120, 1–11, August 17, 2021
Materials and methods and in the Supporting materials
and methods.

In the absence of any EF, the only nonfrictional force
acting on the cell is assumed to be an active force arising
from the internal polarity of the cell. Thus, the cell velocity,
v ¼ vcell, is composed of a single component. A preliminary
analysis of single-cell motility data, described more fully in
the Supporting materials and methods, suggests that the cell
velocity arises from a cell being polarized in a particular di-
rection and that the direction of polarization drifts stochas-
tically over time. A polarized cell has a positive speed
parameterized by a modal value vcell z v, where the sca-
lar-valued parameter v > 0 has dimensions mm min�1. In
addition to random changes in cell speed, preliminary anal-
ysis also suggests that the direction of cell motion stochas-
tically evolves according to a persistent random walk such
that the autocorrelation between displacement directions de-
cays as the time lag increases. Thus, the direction of cell mo-
tion (in the absence of an EF) is assumed to vary according
to an unbiased random walk with positive timescale con-
stant D > 0 with dimensions min�1, which characterizes
the rate of decay in the autocorrelation of the polarization
direction over time. Equation 2 in the Materials and methods
provides the mathematical formulation of this model.

We hypothesize that a vector-valued DC EF, u, can affect
cell motility in a variety of ways. We use a number of exten-
sions of the model to implement different ways in which
motility may be impacted by the EF, specifying, in partic-
ular, four distinct ways in which it may affect the dynamics
of a motile cell. We parameterize the magnitude of each hy-
pothesized electrotactic effect, observed at a reference EF
strength of 200 mV mm�1, by the parameters g1, g2, g3,
and g4 such that if gi ¼ 0, then the corresponding hypothe-
sized effect is not included in the model. Equation 3 in the
Materials and methods provides the mathematical formula-
tion of this model.

The four means by which we model cell motility to be
perturbed by the EF are as follows:

Velocity bias (g1): The EF imparts an additional compo-
nent of force on the cell. The resulting velocity, v ¼
vcell þ vEF, is thus the sum of two components: the
original polarity component, vcell, and an EF compo-
nent, vEF. The EF velocity component acts in the di-
rection of the field with magnitude g1v.

Speed increase (g2): Polarized cells travel more quickly
under the influence of an EF in the direction in which
they are polarized. The modal magnitude of vcell for
polarized cells is increased by g2v.

Speed alignment (g3): Polarized cells travel more
quickly when the direction of their polarization aligns
with the EF but more slowly if opposed to the EF. The
modal magnitude of vcell for polarized cells is
increased by g3vcos(q), where q is the angle between
vcell (i.e., the polarity direction) and the EF direction.
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Polarity bias (g4): The random walk determining cell
polarity is biased so that cells preferentially polarize
in the direction of the EF. The strength of this bias
is parameterized by g4.

Two models can be distinguished: the autonomous model,
in which no EF is applied, and the electrotactic model, in
which a reference strength EF is applied. In each of these
models, the cell velocity at time t, denoted v(t), undergoes
a random walk. Fig. 1 characterizes each of these models
by depicting the stationary probability distribution of this
random walk. The top plot shows that without an applied
EF, the modal cell speed is near v, with direction chosen uni-
formly at random. The bottom plot of this figure demon-
strates how each electrotactic effect, quantified by the value
of gi for i¼ 1, 2, 3, 4, can be interpreted in terms of the prob-
ability distribution of the cell velocity: g1 translates the ve-
FIGURE 1 Comparison of the stationary distributions for the random

velocity, v, under the autonomous and electrotactic models, in which darker

regions correspond to greater probability. The bottom plot shows the

hypothesized electrotactic effects of an EF, applied in the positive x direc-

tion, parameterized by g1,., g4. The effects of g1, g2, and g3 are visible in

the shape of the distribution. Polarity bias (g4) produces asymmetry in the

distribution density, shown as a darker region to the right of the figure. To

see this figure in color, go online.
locity distribution uniformly in the direction of the field, g2
rescales the domain of the distribution, g3 parameterizes
asymmetry in the shape of the velocity distribution, and g4
parameterizes asymmetry in the density of the velocity
distribution.
Outline

The primary goal of this work is to use single-cell experi-
mental data to calibrate the parameterized mathematical
model of spontaneous polarization and electrotaxis. The
model calibration process enables the identification of
which of the four hypothesized electrotactic effects of EFs
on cell motility can be observed in the experimental data.
Importantly, the calibrated model also quantifies the relative
contribution of each of these identified effects. The level at
which we model the system allows us to subsequently use
the calibrated model to simulate and predict the single-cell
response to dynamic EFs.

The data used for model calibration are gathered from
two assays in which the trajectories of motile human corneal
epithelial cells are recorded for 5 h: 1) without any EF
applied for the entire experiment and 2) with a DC EF at
a reference strength of 200 mV mm�1, applied from left
to right over hours 2–3 and from right to left over hours
4–5. These assays are termed the autonomous and electro-
tactic experiments, respectively. We use all 5 h of the auton-
omous experiment and the first 3 h of the electrotactic
experiment as training data to calibrate the parameters of
the autonomous and the electrotactic models. To calibrate
the electrotactic model, we first identify which combination
of the four hypothesized electrotactic effects is best sup-
ported by the data. After identifying which of the electrotac-
tic effects are present in the model, we can then proceed to
quantify the relative contribution of each of them to the
observed electrotaxis induced by the EF.

After formulating and calibrating the extended model of
electrotaxis, we use simulations of the calibrated model to
predict how the cell trajectories evolve over the final 2 h of
the electrotactic experiment, in which the EF input has
changed direction. We compare these predictions with the
cell trajectories observed over the final 2 h of the electrotactic
experiment, held back to be used as test data, and thus validate
the predictive capability of the model for dynamic EF inputs.
The ability to make predictions of cellular motility using a
calibrated, stochastic, uncertain model is a first step toward
the future goal of model-based policy design for the electro-
tactic control of single-cell and population-level motility.
MATERIALS AND METHODS

Data collection

Two experiments were carried out, which we call the autonomous and elec-

trotactic experiments. In both experiments, time-lapse images of human
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corneal epithelial cells, seeded at a low density, were acquired at 5 min in-

tervals over 5 h. In the autonomous experiment, no EF was applied. In the

electrotactic experiment, the cells were subjected to a DC EF at a reference

strength, 200 mV mm�1, applied across the medium from t ¼ 60 min to the

end of the experiment. The EF was directed from left to right from 60 to

180 min, at which point the field direction was reversed from right to left

for 180–300 min. Two replicates of each experiment were performed,

with 26 and 27 cell centroids tracked for each of the autonomous assay rep-

licates and with 26 and 30 cell centroids tracked for each of the electrotactic

assay replicates, all over the entire time horizon. Visual confirmation from

the raw experimental output confirms that cell collisions were rare because

of the low density (100 cells cm�2) at which cells are initially seeded. We

thus assume that cell-cell interactions can be neglected in this model. The

data used in this work are shared online at https://doi.org/10.5281/zenodo.

4749429.

We denote the resulting cell trajectory data xNoEF,i(tk) and xEF,j(tk) for the

autonomous and electrotactic experiments, respectively, in which each tra-

jectory is translated to begin at the origin, such that xNoEF,i(0) ¼ xEF,j(0) ¼
0 for all i and j. For these experiments, the indices i ¼ 1, ., 53 and j ¼ 1,

., 56 refer to the cell being traced, and tk ¼ 5k min refers to the snapshot

time points for k¼ 0,., 60. We hold back xEF,j(tk) for j¼ 1,., 56 and k¼
36,., 60 as test data for the purposes of validating model predictions. The

remaining data are used as training data, from which the model is cali-

brated. Thus, the training data consist of the trajectories from the autono-

mous experiment over the entire time horizon and the trajectories from

the electrotactic experiment over 0–180 min, which are denoted by xNoEF
and xEF, respectively. The test data, denoted xtest, consist of all trajectories

from the electrotactic experiment over 180–300 min, when the input EF has

switched direction.
Materials

EpiLife culture medium with Ca2þ (60 mM), EpiLife defined growth sup-

plement, and penicillin/streptomycin were purchased from Thermo Fisher

Scientific (Waltham, MA). FNC Coating Mix was purchased from Athena

Enzyme Systems (Baltimore, MD). Dow Corning high-vacuum grease was

purchased from Thermo Fisher Scientific. Agar was purchased from

MilliporeSigma (Burlington, MA). Silver wires with 99.999% purity

were purchased from Advent Research Materials (Oxford, UK).
Cell culture

Telomerase-immortalized human corneal epithelial cells were routinely

cultured in EpiLife medium supplemented with EpiLife defined growth

supplement and 1% (v/v) penicillin/streptomycin. Cells were incubated at

37�C with 5% CO2 until they reached �70% confluence and were used

between passages 55 and 65 for all cell migration assays.
Electrotaxis assay

Electrotaxis experiments were performed as previously described (15,16),

with minor changes. Briefly, the electrotaxis chambers (20 � 10 �
0.2 mm) were constructed in 100 mm petri dishes with glass strips and

high-vacuum grease. The dimensions of the chambers were defined by

the thickness and length of the glass slides, respectively. Chambers were

coated with FNC Coating Mix, following the manufacturer’s instructions

to facilitate cell attachment. Cells were seeded at a low density (100 cells

cm�2) and cultured overnight (12–18 h) in the chambers to allow sufficient

attachment. Chambers were covered with glass coverslips and sealed with

high-vacuum grease. Electric currents were applied to the chamber through

agar-salt bridges connecting with silver-silver chloride electrodes in Stein-

berg’s solution (58 mM NaCl and 0.67 mM KCl and 0.44 mM Ca(NO3)2,

1.3 mMMgSO4, and 4.6 mM Tris base (pH 7.4)). Fresh cell culture medium
4 Biophysical Journal 120, 1–11, August 17, 2021
(EpiLife) was added into reservoirs to ensure good salt bridge contact and to

support cell viability during electric stimulation. An EF strength of 200 mV

mm�1 was used unless otherwise noted. A pair of measuring electrodes was

placed at the end of the electrotaxis chamber and connected to the multi-

meter for real-time monitoring of EF strength. The applied voltages were

confirmed at the beginning of the experiment and every 30 min afterwards

to ensure consistent EF application.
Time-lapse imaging and quantification of cell
migration

Cell migration was monitored and recorded by phase-contrast microscopy

using an inverted microscope (Carl Zeiss, Oberkochen, Germany) equipped

with a motorized stage and a regular 10� objective lens. Time-lapse images

were acquired at 5 min intervals using Metamorph NX imaging software

(Molecular Device, Sunnyvale, CA). To maintain standard cell culture con-

ditions (37�C, 5% CO2), a Carl Zeiss incubation system was used. Time-

lapse images of cell migration were analyzed by using ImageJ software

from the National Institutes of Health (https://imagej.nih.gov/ij/). Adherent

cells in the images were manually tracked, and cells that divided, moved in

and out of the field, or merged with other cells during the experiment were

excluded from analysis. The position of a cell was defined by its centroid.
Model construction

We constructed a mathematical model of single-cell dynamics. The model

tracks the position of the cell center in the plane, x(t) ˛ R
2, as a function of

time, tR 0 min, with initial condition x(0)¼ 0 at the origin. The position is

a deterministic integral of cell velocity, v, such that

dxðtÞ ¼ vðtÞ dt; (1)

and the stochastic dynamics of v are modeled. The key to this modeling task

is the nondimensional internal variable representing the cell polarity, p(t) ˛
R
2. We assume that the polarity imparts a force on the cell that corresponds

to its active motility, resulting in a velocity component vcell(t).
Modeling spontaneous polarization and motility

We first describe the model of cellular motility with no biasing EF, which

we will term the autonomous model. The only velocity component is that

due to polarization, so we write the cell velocity as a single component,

vðtÞ ¼ vcellðtÞ ¼ vpðtÞ; (2a)

where the parameter v R 0, with dimensions mm min�1, represents the

modal magnitude of vcell for a polarized cell. Note that Eq. 2a implies

that the polarity variable, p, is a nondimensionalization of the velocity

component vcell. We further assume that the polarity, p, undergoes a random

walk according to a Langevin diffusion such that

dpðtÞ ¼ � DVWðpðtÞÞ dt þ
ffiffiffiffiffiffi
2D

p
dB; (2b)

where B(t) ˛ R
2 is a two-dimensional Wiener process and the parameter D

(in min�1) quantifies the speed at which the random walk approaches sta-

tionarity. The initial polarity, denoted p0 ¼ p(0), also needs to be specified.

The potential function W(p) in Eq. 2b is defined to capture the intended

features of the autonomous model, namely that the magnitude of the cell

velocity is randomly distributed around a modal value of v and that the

direction of the polarity is uniformly distributed at stationarity. It can be

shown (17,18) that the variability of the velocity around its modal value

of v is determined by a nondimensional energy barrier, denoted DW, that

is sufficient to define the potential function, W(p). For further details on

https://doi.org/10.5281/zenodo.4749429
https://doi.org/10.5281/zenodo.4749429
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the definition ofW, see the Supporting materials and methods. We will cali-

brate the autonomous model in Eq. 2 by identifying the parameters v, D,

and DW.
Modeling motility bias due to an EF

We use a vector-valued function, u(t), with nondimensional magnitude ||

u(t)|| ¼ u(t) to describe a (time-varying) DC EF of strength 200u(t) mV

mm�1, directed parallel to u(t). In particular, the specific EF used in the

electrotactic experiment, with magnitude 200 mV mm�1 in the positive x

direction (left to right) over 60–180 min and reversed over 180–300 min,

is represented using the constant canonical unit vector, i, by the vector-

valued function

uEFðtÞ ¼

8>><
>>:

0 t < 60;
i 60%t < 180;
�i 180%t:

Note that the function uEF(t) represents the specific EF corresponding to

the electrotactic experiment, and arbitrary EF inputs are modeled using the

notation u(t). The autonomous model in Eq. 2 can be extended to include

the four hypothesized effects of the EF. The velocity bias effect is accounted

for by modeling the velocity using two components,

vðtÞ ¼ vcellðtÞ þ vEFðtÞ; (3a)

where the EF induces a deterministic velocity component in the direction of

the field,

vEFðtÞ ¼ g1vuðtÞ: (3b)

The two hypothesized electrotactic effects of speed increase and speed

alignment are both modeled through adapting the velocity component

induced by the cell polarity, originally defined in Eq. 2a, into

vcellðtÞ ¼
�
1þg2uðtÞþg3uðtÞ $ bpðtÞ�vpðtÞ; (3c)

where bp is the unit vector in the direction of the polarity, p. Finally, the hy-

pothetical polarity bias effect is modeled in the stochastic evolution of the

polarity variable p. We add a drift term proportional to the EF to the Lan-

gevin diffusion equation such that

dpðtÞ ¼ � D½VWðpðtÞÞ�g4uðtÞ� dt þ
ffiffiffiffiffiffi
2D

p
dB; (3d)

where W(p) is the same potential function as used in Eq. 2b. As for the

autonomous model, the initial value for the polarity, denoted p0 ¼ p(0),

is also required.

Note that substituting u(t) h 0 or setting gi ¼ 0 for all i ¼ 1, 2, 3, 4 into

Eq. 3 recovers the dynamics of the autonomous model in Eq. 2. We will

term the extended model in Eq. 3 the electrotactic model. It is parameter-

ized by the three parameters v, DW, and D, with the same meaning and di-

mensions as in the autonomous model, and also by gi for i ¼ 1, 2, 3, 4,

which, because u is nondimensional, are all nondimensional.

The models in Eq. 2 and Eq. 3 result in a stochastic path for the velocity,

v(t), with a parametrically determined stationary distribution. Following

Eq. 1, each path can be integrated to produce a stochastic trajectory of

the cell position over time. The stationary distributions of v under the auton-

omous and electrotactic models are depicted in Fig. 1. The effect of each of

the parameters gi, and hence each of the hypothesized electrotactic effects,

can be identified by comparing the position, scale, and asymmetries of the

two stationary distributions.
Summarizing simulations

For any given set of parameter values, q ¼ (v, DW, D, g1, g2, g3, g4),

together with initial polarity p0 and nonzero EF input u(t), the stochastic

model in Eq. 3 can be simulated. Note that if the EF is 0, we simulate

the autonomous model in Eq. 2. Each simulation produces a random trajec-

tory, denoted u¼ (p(t), x(t))t R 0. Wewill use summary statistics to analyze

the model outputs by mapping each simulated trajectory, u, to a number (or

small set of numbers) that summarize the trajectory. More details of the

summary statistics can be found in the Supporting materials and methods.

We define a set of summary statistics based on simulated cell positions at

5 min time points tj ¼ 5j over any given time interval, tn < tn þ m. We

consider 1) the net horizontal cell displacement over the entire interval,

(x(tn þ m) � x(tn)) $ i, denoted by Y1(u); 2) the net absolute cell displace-

ment over the entire interval, ||x(tn þ m) � x(tn)||, denoted Y2(u); 3) the path

length, measured as the sum of displacements,
Pm

r¼1x(tn þ r)� x(tn þ r � 1),

between the 5 min sample points, denoted Y3(u); and 4) the standard devi-

ation of the displacements, ||x(tn þ r) � x(tn þ r �1)||, over r ¼ 1, ., m, and

denoted Y4(u). Note that the four summary statistics Y1, Y2, Y3, and Y4 can

also be applied to the observed data, xNoEF,i and xEF,i, in addition to any

simulated trajectory, u.

In the models in Eq. 2 and Eq. 3, the polarity, p(t), evolves randomly from

the initial value p0. We define a further three summary statistics based on the

simulated polarity, using a threshold polarity magnitude, p. First, we define

the time to polarize, T1, as the average time at which a simulated cell polarity,

from initial polarity p0 ¼ 0, first has polarity ||p(t)|| R p. Conversely, we

define the time to depolarize, T0, as the average time at which a simulated

cell polarity, from initial polarity p0 ¼ i, first has polarity p(t) % p. Finally,
the value P(polarized) is defined as the probability that a simulated cell po-

larity at the end of an assay satisfies ||p(300)||R p. Note that these summary

statistics cannot be applied to the observed data, as the polarity is not

observed, and can only be used to summarize simulated trajectories.
Model calibration and selection

Given the experimental training data sets, xNoEF and xEF, the autonomous

and electrotactic models can be calibrated by identifying the values of

the parameters,

q ¼ ðv;DW;D;g1;g2;g3;g4Þ;

that are consistent with the observed behavior. We employ a Bayesian

approach to parameter inference, whereby prior beliefs about q, encoded

in a prior distribution p(q), are updated in the context of the experimental

data according to Bayes’s rule,

pðq jxNoEF; xEFÞ ¼ LðxNoEF; xEFjqÞpðqÞ
pðxNoEF; xEFÞ ;

where L(xNoEF, xEF | q) is the likelihood of observing the data under the

models in Eq. 2 and Eq. 3 with the parameter value q. The resulting poste-

rior distribution, p(q | xNoEF, xEF), represents the remaining uncertainty in

the parameter values given the training data (19).

The simulation and inference algorithms used in this work have been

developed in Julia 1.5.1 (20). The code is publicly available at github.

com/tpprescott/electro.
Bayesian synthetic likelihoods and sequential
Monte Carlo

In practice, the likelihood cannot be calculated directly, and so we require a

likelihood-free approach. We replace the true likelihood with a synthetic

likelihood, in which for each value of q, the likelihood is approximated

by the likelihood of summarized data under an empirical Gaussian
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distribution. The empirical distribution is fit to the sample mean and covari-

ance of a set of n ¼ 500 summarized simulations (21–23). The summary

statistics we use are Y1, Y2, Y3, and Y4, as described in Summarizing simu-

lations, above. We summarize the interval 0–300 min for the trajectories

from the autonomous experiment and the separate intervals 0–60 and 60–

180 min for the trajectories from the electrotactic experiment. To mitigate

the computational burden of the large number of model simulations

required for parameter inference, we combine a sequential Monte Carlo

(SMC) algorithm with synthetic likelihoods (21,24,25). This approach is

a popular strategy for efficiently sampling from a target distribution and

also allows the exploitation of parallelization to speed inference (21,25–

27). We provide full details of the SMC inference approach using summary

statistics and synthetic likelihoods in the Supporting materials and methods.
Prior specification and model selection

The space of possible parameter values is defined as the product of

intervals,

Q ¼ �
0; 5�2 � ð0; 0:5� � ½0; 2�4;

where the interval bounds were chosen based on a preliminary qualitative,

visual analysis of the simulation outputs in comparison to observed data. To

identify which of the 16 possible combinations of the four hypothesized

electrotactic effects are best supported by the experimental data, we will

define 16 possible priors on Q. For each of the 16 subsets, X 4 {1, 2, 3,

4}, we define a uniform prior distribution pX(q) on Q that takes a constant,

positive value for parameter vectors q if and only if gi > 0 for all i ˛ X and

gi ¼ 0 otherwise. Thus, by performing Bayesian inference using the prior

distribution, pX, we constrain the electrotactic model in Eq. 3 to model

only electrotactic effects included in the subset X 4 {1, 2, 3, 4}.

We define an optimization problem that aims to prevent overfitting by

balancing the closeness of the model fit to data while prioritizing smaller

parameter dimensions. The optimal subset, X, of electrotactic effects is

defined as the maximizer of the objective function,

JmðXÞ ¼ logpXðxNoEF; xEFÞ � mð3þ jXjÞ; (4)

where the regularization parameter m R 0 controls the cost of overfitting by

penalizing the total number of nonzero parameters. This number is three, cor-

responding to v,DW, andD, plus |X|, corresponding to the positive gi for i˛ X.

We use m¼ 0 and m¼ 2 in our analysis, though we note that the choice of m is

somewhatarbitrary.Choosingm¼ 2 imposes apenalty on theparameterdimen-

sion analogous to that used in the Akaike information criterion (19). One inter-

pretation of the value ofm is that it effectively imposes a ‘‘prior’’ on the subsets,

X4 {1, 2, 3, 4}, with probability mass proportional to exp(�m|X|).

The first term in Jm(X) measures the closeness of fit between the data and

the model when constrained to only include the electrotactic effects in X. This

fit is defined for each X 4 {1, 2, 3, 4} by the value of the partition function,

pXðxNoEF; xEFÞ ¼
Z

LðxNoEF; xEFjqÞpXðqÞ dq:

As the likelihoodsL(xNoEF,xEF | q) cannot be calculated directly, the partition
functions pX(xNoEF, xEF) are estimated for each X by Monte Carlo sampling, in

which again the simulation-based synthetic likelihood is used inplaceof the true

likelihood. More details of the specific SMC sampling methodology used for

this estimate are given in the Supporting materials and methods.
RESULTS

We initially calibrate the autonomous model, based on the
portion of the training data set xNoEF from the autonomous
6 Biophysical Journal 120, 1–11, August 17, 2021
experiment alone, to confirm the principle of the modeling
framework and its ability to replicate observed behaviors
and to check that the parameters are identifiable from the
data. Then, we calibrate the full electrotactic model using
the full training data set, xNoEF and xEF, in two stages. We
first assess which subset of the four hypothesized electrotac-
tic effects is best supported by the data. After choosing the
optimal combination of electrotactic effects, we then cali-
brate the parameters of the selected electrotactic model.
Parameters of the autonomous model are
identifiable

We begin by confirming that the chosen modeling and
inference approaches appropriately capture the autonomous
experimental behavior, xNoEF, in which no external EF is
applied. The cell trajectories in this portion of the training
data are depicted in Fig. 2 a. This scenario is modeled by
the autonomous model in Eq. 2, which depends on three
parameters, qNoEF ¼ (v, DW, D). The Bayesian synthetic
likelihood approach was used to generate posterior samples
for the characteristic speed of a polarized cell, v mm min�1;
the timescale constant, D min�1, which determines the char-
acteristic timescale of the spontaneous polarization dynamics;
and the dimensionless parameter, DW, which determines the
variability of the cell polarity around its modal value.

Fig. 2, b–d depict the marginals of the posterior distribu-
tion, p(qNoEF | xNoEF), for each of the three calibrated param-
eters. The prior distribution used for Bayesian inference
assumed that the parameters were independently uniformly
distributed on the intervals 0 < v % 5 mm min�1, 0 < DW
% 5, and 0 < D% 0.5 min�1. Each plot in Fig. 2, b–d dem-
onstrates that the posteriors are concentrated within a small
interval of the prior support, implying that the parameters
of the autonomous model are identifiable from the experi-
mental data, with quantifiable uncertainty.

The sample median parameter value, calculated from the
sample in Fig. 2, b–d, can be used as a point estimate for
the parameter values: v ¼ 1.15 mm min�1, DW ¼ 0.018,
andD¼ 0.042 min�1. In Fig. 2 e, we depict a random sample
of trajectories simulated from the autonomous model, with
parameter values sampled from the empirical posterior, that
compare well with the observed trajectories from the auton-
omous experiment, xNoEF. A comparison between these plots
shows that parameter inference based only on the selected
four-dimensional summary statistics produces a close match
(for this point estimate) between the visual characteristics of
simulations and experimental observations. A more detailed
analysis of the fit of the calibrated autonomous model to
the training data is given in the Supporting materials and
methods, including a comparison of posteriors trained on
the two replicates separately and a cross validation of the pos-
terior predictive distribution of the four summary statistics.

Fig. 2, b–d quantifies the uncertainty in each parameter
value resulting from the Bayesian approach to parameter
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FIGURE 2 Parameter inference and simulation of the autonomous model. (a) The subset of the training data used to calibrate the autonomous model,

corresponding to all observed trajectories under the autonomous experiment. (b–d) All one-dimensional projections of the posterior sample from p(qNoEF
| xNoEF). The covariance structure of the posterior is given in Fig. S2. (e) Simulations of the calibrated model, using parameters randomly selected from

the posterior depicted in (b)–(d). (f–h) Posterior predictive samples for T1 (time to polarization), T0 (time to depolarization), and P(polarized) (probability

of a cell being polarized at the final time) for simulations from the autonomous model with parameters taken from the posterior, p(qNoEF | xNoEF), depicted in

(b)–(d). To see this figure in color, go online.
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inference. To make sense of this uncertainty in terms of the
model outputs, simulations can be used to interpret how the
uncertainty propagates to observable behavior. Fig. 2, f–h
depict an estimate of the uncertainty in (Fig. 2 f) the average
time a simulated cell takes to polarize, T1; (Fig. 2 g) the
average time a simulated cell takes to depolarize, T0; and
(Fig. 2 h) the proportion of simulated cells that are polarized
by the end of the experiment, P(polarized). Each of these
distributions are conditioned on the posterior parameter dis-
tribution in Fig. 2, b–d. This procedure allows us to map
quantified uncertainty in the parameter values to uncertainty
in cell behavior. The calibrated model suggests that the ex-
pected time for a cell to spontaneously polarize (i.e., without
an EF applied) ranges from 2.8 to 10 min (5–95% quantiles),
with a median value of 5.4 min. Similarly, the expected time
for a cell to depolarize is 94–174 min, with a median value
of 124 min. Finally, the probability that a simulated cell is
polarized (in any direction) at the end of the experiment is
0.9–0.97, with a median value of 0.94.
One of the four proposed electrotactic effects is
supported by the data

Given that the autonomous model can be calibrated to the
data set from the autonomous experiment, we now seek to
calibrate the full electrotactic model to the entire training
data set taken from both experiments. However, some or
all of the hypothesized electrotactic effects used to define
the model in Eq. 3 may not be supported by the experi-
mental data. Thus, we first use the training data to select
which of these proposed effects can be detected in the
observed cell behaviors. Recall that the parameters g1, g2,
g3, and g4 correspond to four distinct hypothesized electro-
tactic effects: velocity bias, speed increase, speed align-
ment, and polarity bias. Positive values of the parameters
gi, for i ¼ 1, 2, 3, 4, mean that the corresponding effect is
included in the model. Conversely, setting any of these pa-
rameters to zero excludes the corresponding effect(s) from
the model. There are a total of 24 ¼ 16 possible combina-
tions of the four proposed electrotactic effects that the
model in Eq. 3 can implement through combinations of pos-
itive and zero parameter values.

Each of the 16 possible combinations of the four electro-
tactic effects corresponds to a subset X 4 {1, 2, 3, 4}. We
evaluate each combination of electrotactic effects, given
by X, with respect to the objective function, Jm(X), given
in Eq. 4. This objective quantifies the tradeoff between the
model fit and the number of nonzero parameters to select
a suitably accurate model while avoiding overparameteriza-
tion. Fig. 3 ranks each of the 16 possible combinations of
Biophysical Journal 120, 1–11, August 17, 2021 7



FIGURE 3 Objective functions J0(X) and J2(X) from Eq. 4, for combina-

tions of electrotactic effects indexed by X4 {1, 2, 3, 4}. Greater values are

preferred. Each objective function is translated to have zero minimal value.

To see this figure in color, go online.
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electrotactic effects, X 4 {1, 2, 3, 4}, using two different
objective functions. The top plot considers m ¼ 0 such
that the maximizer of J0 is the combination that gives the
best fit to data, with no consideration given to the dimension
of parameter space. The bottom plot uses m ¼ 2, which im-
poses a marginal cost on increasing the dimension of param-
eter space. Both objective functions are maximized by the
singleton subset X ¼ {4}, by a margin of over 10 from
X ¼ {1, 4} in second place. This margin implies a Bayes
8 Biophysical Journal 120, 1–11, August 17, 2021
factor (19) greater than 10 in favor of a prior such that g4

˛ (0, 2] with g1 ¼ g2 ¼ g3 ¼ 0, thus providing strong sup-
port for including only the polarity bias effect of the EF in
our model and neglecting all of the other hypothesized ef-
fects. Indeed, we can also conversely conclude from
Fig. 3 that any prior that sets g4 ¼ 0 would induce a poor
fit to the observed data.
The electrotactic effects of the EF on motility can
be quantified

Recall that cell motility is modeled as the sum of an active
force component deriving from cell polarization and a
component composed of other external forces acting on
the cell. In the selected model found in the preceding sec-
tion, we found g1 ¼ 0, meaning that the training data pro-
vide no evidence that the EF imparts an external force.
Finding that g2 ¼ g3 ¼ 0 further implies that polarized cells
do not travel any faster in the presence of a field, either uni-
formly or only if polarized in alignment with the field.
Instead, the EF produces the observed bias in cell motility
solely because of causing cells to preferentially polarize in
the direction of the EF. In this section, we calibrate the elec-
trotactic model by using the entire training data set, xNoEF
and xEF, to infer the posterior distribution of g4 > 0 while
also refining the posterior distributions of v, DW, and D.

Bayesian synthetic likelihoods were used to calibrate the
electrotactic model by inferring the posterior distribution,
p(q | xNoEF, xEF), for

q ¼ ðv;DW;D;g1;g2;g3;g4Þ:

The chosen prior distribution, p{4}(q), is the product of in-
dependent uniform distributions on the intervals 0 < v % 5
mm min�1, 0 < DW % 5, and 0 < D % 0.5 min�1, multi-
plied by an independent and uniformly distributed prior
for the polarity bias parameter on the interval 0 < g4 %
2. The remaining parameters in pX(q) are fixed at g1 ¼
g2 ¼ g3 ¼ 0.

Fig. 4, a–d show the empirical marginals from the poste-
rior sample from p(q | xNoEF, xEF), constructed using
Bayesian synthetic likelihoods and SMC sampling. The
marginals shown correspond to the four nonzero parameters
of the model, v, DW, D, and g4. The posterior marginal dis-
tributions of the previously inferred parameters v, DW, and
D closely match those in Fig. 2, b–d, as depicted in
Fig. S7. Similarly to Fig. 2, the posterior distribution is
concentrated in a small region of the prior domain,
providing evidence that each of the parameters is identifi-
able using the chosen summary statistics.

The median of the SMC sample depicted in Fig. 4, a–d can
be used as a point estimate for the parameter values: v¼ 1.11
mm min�1, DW ¼ 0.020, D ¼ 0.069 min�1, and g4 ¼ 0.60.
Fig. 4, e–h compare the training data against 50 simulations
from both models, Eq. 2 and Eq. 3, using parameter values
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FIGURE 4 Empirical posterior samples inferred from training data: all

trajectories from the autonomous experiment and also from the electrotactic

experiment for 0–180 min. (a–d) One-dimensional projections of the empir-

ical posterior distribution for all nonzero parameter values, based on the

selected prior, p[4]. In the Supporting materials and methods, the two-

dimensional projections of this posterior are depicted in Fig. S6, and a com-

parison of the posterior distributions of v, DW, and D in Fig. 2, b–d and here

is depicted in Fig. S7. (e–h) Observed and simulated trajectories for (e and

f) the autonomous experiment and (g and h) the electrotactic experiment

over 0–180 min. Simulations in (f) and (h) were produced for randomly

sampled parameter values from the posterior in (a)–(d). To see this figure

in color, go online.
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randomly sampled from the empirical posterior depicted in
Fig. 4, a–d. The observed bias in motility toward the direction
of the EF is reflected in the stochastically simulated outputs.
This provides visual confirmation that parameters inferred by
Bayesian synthetic likelihood, based on the chosen summary
statistics, produce simulated outputs that share observable
characteristics with the experimental data. In the Supporting
materials and methods, we provide a more detailed validation
of the fit of the calibrated model to the training data,
including a cross validation of the posterior predictive
distributions of the summary statistics against the observed
summary statistics, in Fig. S8.
Validation against test data

Recall that the portion of the data collected from the electro-
tactic experiment corresponding to the time interval 180–
300 min was held back from the training set used to calibrate
the model. The predictions of the calibrated electrotactic
model can be validated against this test data set, as a predic-
tion of the cell responses to a reversed EF input.

In Fig. 5, we compare the predictions to the test data in two
ways. Fig. 5 depicts the marginals of the empirical posterior
predictive distribution for all four summary statistics over the
interval 180–300 min, overlaid against the corresponding
summarized test data. These distributions show a good level
of agreement, demonstrating that these characteristics of the
observed motility data can be predicted by the model. In
Fig. 5, e and f, we also compare the observed trajectories
over 180–300 min (translated to begin at the origin) against
a set of simulated trajectories, using parameter values
sampled randomly from the posterior in Fig. 4, a–d. A visual
comparison shows that the diversity of observed trajectory
characteristics is well captured by the stochastic simulations
and parameter uncertainty. These comparisons provide
evidence helping to validate the calibrated model by demon-
strating its ability to accurately predict the cellular response
to dynamic EF inputs against unseen data.
DISCUSSION

The primary goal of this work has been to use mathematical
modeling to quantitatively identify the contributions of mul-
tiple hypothesized means by which EFs induce electrotaxis in
single cells. We have presented an empirical, parameterized,
agent-based model of electrotactic cell motility and shown
that it can be calibrated to single-cell trajectory data using
likelihood-free Bayesian inference. To our knowledge,
although many models of single-cell and collective motility
under environmental cues have been developed (13), there
have been few mathematical models of electrotaxis (28,29),
and this work is the first use of detailed mathematical
modeling at a single-cell level to quantify motility under
electrotaxis. Moreover, the inferred parameter values of the
calibrated model provide quantitative, mechanistic insights
into experimentally observed electrotaxis.

Specifically, by calibrating the model to experimental ob-
servations of electrotaxis in human corneal epithelial cells,
we have concluded that the observed bias in motility is
the result of polarity bias, in which cells preferentially
evolve the direction of their polarization to align with the
direction of the EF. The data do not support the hypothesis
that an EF contributes an external force on the cell or that
polarized cells travel at different speeds in the presence of
a field. By carefully calibrating the parameterized mathe-
matical model to experimental data, we have quantified
the effect of the polarity bias on the electrotactic phenotype
of this cell line.
Biophysical Journal 120, 1–11, August 17, 2021 9
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FIGURE 5 Comparing predictions of the calibrated electrotactic model

against test data: observed trajectories from the electrotactic experiment

for 180–300 min. (a–d) One-dimensional projections of the summary statis-

tics. Curves are an empirical distribution of simulated summary statistics

for each parameter value from the posterior sample depicted in Fig. 4, a–

d. We overlay a barcode plot of each of the summary statistics of the

observed test data. (e and f) Observed and simulated trajectories over

180–300 min. Simulations in (f) were produced for randomly sampled

parameter values from the posterior in Fig. 4, a–d. To see this figure in co-

lor, go online.
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A key strength of the model presented in Eq. 3 is its flex-
ibility. The parametric design means that the Bayesian cali-
bration methodology used in this work can be recapitulated
to calibrate the same model to electrotaxis assays using other
cell types or with different experimental conditions. Thus,
observed differences in spontaneous and electrotactic motility
between different cells and experimental conditions (3,5) can
be modeled and predicted within a common parametric
framework. It is also important to acknowledge that we
have chosen from only four hypothetical observable effects
of electrotaxis. Other electrotactic effects may be reasonably
included in the modeling process; for example, the EF may
induce changes to the rate of polarization and depolarization
(3). The electrotaxis model can straightforwardly be extended
10 Biophysical Journal 120, 1–11, August 17, 2021
and recalibrated to account for any alternative hypothetical
effects.

We have also considered EFs at a single reference
strength, requiring a single parameter to quantify each hy-
pothesized electrotactic effect. However, the characteristics
of electrotaxis have been observed to vary nonlinearly with
EF strength (5). The model is sufficiently flexible to account
for this phenomenon through the replacement of the param-
eters giwith functions Gi(u) that vary with the EF strength, u
mV mm�1. The challenge will then be to use experimental
data gathered from assays using EFs of different strengths
to infer each of the functions Gi in place of each of the
parameters gi.

The model we have presented predicts single-cell electro-
tactic behavior. However, there is a wealth of data and ana-
lyses on electrotaxis in the context of cell populations
(3,4,6–9,13). The electrotaxis model in this work is a start-
ing point for a comprehensive agent-based model that also
incorporates phenomena such as volume exclusion, adhe-
sion, elastic collisions, contact inhibition, and so on
(13,30,31). Furthermore, there is significant scope for link-
ing the calibrated parameters of the single-cell model
described in this work to the construction of lower-level
models of the intracellular processes that give rise to elec-
trotaxis. Multifidelity approaches (27,32) that can link ex-
periments and information at the intracellular, single-cell,
and multicellular level will be vital to identify and quantify
the biasing effects of EFs on the collective motility of cell
populations (12,14,33).

The model considered in this work and the Bayesian un-
certainty quantification of its parameters are important tools
for enabling stochastic model predictive control designs of
such policies based on output feedback and filtering (34).
We have therefore provided a significant step toward the
real-time model predictive control of populations of electro-
tactic cells.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2021.06.034.
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1 Preliminary data analysis

To justify the assumption that the cell velocity evolves according to a random walk, we performed an initial analysis

of both control data replicates. In Figure S1(a,b) we plot the distribution of displacement distances travelled in

each five-minute sampling interval over the five-hour experiment, smoothed using a kernel density estimate, and

where each curve corresponds to a different cell. These distributions in displacement distances are consistent with

the modelling assumption that cells can spontaneously polarise, in which state they travel at a positive speed, and

can also transiently depolarise.

Furthermore, we can also justify our assumption that the direction of motion of each cell drifts stochastically

over time. Figure S1(c,d) plots the autocorrelations between the observed angle of cell displacements over each

five-minute interval for each cell trajectory, measured for time lags from 5 min to 60 min. This figure demonstrates

that the autocorrelation in the observed motility direction decays with increasing time lag. This observation is

consistent with the modelling assumption that the velocity direction evolves according to a random walk.

2 Mathematical model of electrotaxis

The autonomous model of cellular velocity in Eq. (2) is given by

v(t) = vp(t), (2a)

dp(t) = −D∇W (p(t)) dt+
√

2D dB, (2b)

*tprescott@turing.ac.uk
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and the electrotactic model in Eq. (3) is given by

v(t) = vcell + vEF, (3a)

vEF(t) = γ1vu(t), (3b)

vcell(t) = (1 + γ2u(t) + γ3u(t) · p̂(t)) vp(t), (3c)

dp(t) = −D (∇W (p(t))− γ4u(t)) dt+
√

2D dB. (3d)

Here, cell velocity is denoted by v and cell polarity is denoted by p. The vector u represents the EF with magnitude

‖u(t)‖ = u(t), scaled such that u(t) = α represents a field of strength 200α mV mm−1 applied at time t in the

direction parallel with u(t). The two-dimensional standard Wiener process is denoted by B, and p̂ is the unit vector

in the direction of polarity. Both models depend on the parameters v, with units µm min−1, and D, with units

min−1. Thus p is a non-dimensional quantity. The additional parameters, γ1, . . . , γ4, in the electrotactic model

parametrise the four hypothesised electrotactic effects, as described in the main text.

Also common to both models is the potential function W (p). This function is defined to capture the intended

features of the autonomous model, namely that cells stochastically and spontaneously polarise, and that the direction

of the polarity is uniformly distributed at stationarity. Denoting p = |p|, it follows from the latter requirement

that the potential function W (p) = W (p) must be radially symmetric. The interpretation of the parameter v as

the modal speed of a polarised cell also implies that the polarised state is characterised by p stochastically evolving

in the regime p ≈ 1. We therefore require a potential function with local minimum at p = 1. Following [11], this

function is implemented as

W (p) = β

(
1

4
p4 − 1

2
p2

)
, (S1)

where β > 0 defines the local minimum valueof the wellat p = 1. It can be shown [17, 18] that the rate at which

the cell transiently depolarises is determined solely by the timescale parameter, D min−1, and the non-dimensional

value of the energy barrier, ∆W = β/4. Hence, we calibrate the models in Eq. (2) and Eq. (3) by inferring the

common parameters, v, D, and ∆W , together with the parameters γ1, . . . , γ4 specific to the electrotactic model.

Note on polarity definition Our description of the model interprets the variable p as the cell polarity, and

treats velocity as the combination of a polarity component and a component due to the EF. Another interpretation

of p is available if we specifically define single-cell polarity as the non-dimensionalisation of the velocity by v. In

the electrotactic model, this alternative definition identifies cell polarity as the variable

v/v = (1 + γ2u+ γ3u · p̂)p + γ1u.

The variable p, with dynamics (3d), is then interpreted as a slowly-responding component of the cell polarity (in

the alternative definition) to the EF input, while γ1u, identifiable with velocity bias, is an instantly-responding

component of the cell polarity. However, these definitions are internal to the model, in the sense that they have

no effect on the observable position or velocity of simulated cells. Thus, in the current work, we choose to identify

‘cell polarity’ as the modelled variable p, while noting that alternative interpretations are possible.

3 Likelihood-free Bayesian inference

To infer the parameters of the model, we will use the data from both experimental assays. We use all recorded cell

positions from the autonomous experiment over t ∈ [0, 300], denoting this data set by xNoEF. In addition, we use the

recorded cell positions from the electrotactic experiment, but only over t ≤ 180 min, denoting this data set by xEF.
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Note that the data from the electrotactic experiment gathered over t > 180 min will be held back as test data. The

Bayesian inference framework uses the experimental training data, xNoEF and xEF, to update a prior distribution,

π(θ), into a posterior distribution, π(θ | xNoEF,xEF), by multiplying by the likelihood, L(xNoEF,xEF | θ), according

to Bayes’ rule,

π(θ | xNoEF,xEF) ∝ L(xNoEF,xEF | θ)π(θ).

To define the likelihood, we first consider simulations of the models in Eq. (2) and Eq. (3).

For a given parameter vector, θ, initial polarity, p0, and non-zero EF input, u(t), the model in Eq. (3) is

simulated and a trajectory, ω = (p(t),x(t))t≥0, is produced. This stochastic trajectory has conditional density

p(ω | θ,p0,u(t)). We assume that there is a known distribution, ϕ(p0), for the initial polarity: for the inference

procedure carried out in the main text, we assume that ϕ is a Gaussian distribution with zero mean and diagonal

covariance matrix, with component-wise variances of 0.1. For the two specific experimental inputs, uNoEF(t) ≡ 0

and

uEF(t) =


0 t < 60,

i 60 ≤ t < 180,

−i 180 ≤ t,

we integrate the density p with respect to ϕ(p0) and thus define two densities,

pNoEF(ω | θ) =

∫
p(ω | θ,p0,uNoEF)ϕ(p0) dp0, (S2)

pEF(ω | θ) =

∫
p(ω | θ,p0,uEF)ϕ(p0) dp0, (S3)

for trajectories simulated by the autonomous and electrotactic models, respectively. Each observed trajectory in

the experimental training data set, xNoEF,i and xEF,i, thus defines a set in the simulation space,

Ω(xNoEF,i) =
{
ω = (x(t),p(t))t≥0 : x(tj) = xNoEF,i(tj) ∀j = 0, . . . , 60

}
,

Ω(xEF,i) =
{
ω = (x(t),p(t))t≥0 : x(tj) = xEF,i(tj) ∀j = 0, . . . , 36

}
,

of all simulated trajectories that are indistinguishable from the observed training data. We thus define the likelihoods

of each simulation as

LNoEF(xNoEF,i | θ) =

∫
Ω(xNoEF,i)

pNoEF(ω | θ) dω,

LEF(xEF,i | θ) =

∫
Ω(xEF,i)

pEF(ω | θ) dω,

for each cell index, i. The likelihoods of each trajectory thus combine to give the posterior,

π(θ | xNoEF,xEF) ∝ L(xNoEF,xEF | θ)π(θ)

=
∏
i

LNoEF(xNoEF,i | θ)
∏
j

LEF(xEF,j | θ)π(θ). (S4)

However, it is clear that the likelihood of each of the experimentally observed trajectories cannot easily be calculated.

We therefore identified the posterior parameter distribution using a likelihood-free (i.e. simulation-based) Bayesian

inference approach, harnessing the concept of synthetic likelihoods.
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3.1 Synthetic likelihoods

We focus on the autonomous case first; the electrotactic case follows similarly, with an obvious change of notation.

The synthetic likelihood approach approximates the likelihoods, LNoEF(xNoEF,i | θ) in two stages. The first stage

is to reduce the dimension of the data space by defining a function of the simulated and observed trajectories that

maps the data to a low-dimensional summary statistic. The second stage is to (a) use repeated simulation of the

summarised model at the parameter value θ to fit an empirical multivariate Gaussian distribution for the summary

statistic, and then (b) to approximate the likelihood with the synthetic likelihood of the experimental data, defined

as the likelihood of the summarised data under the fitted empirical Gaussian distribution.

We define the function Y : ω 7→ R4 for the simulated trajectory ω = (x(t),p(t)) on t ∈ [tn, tn+m] as:

Y1(ω) = (x(tn+m)− x(tn)) · i (S5a)

Y2(ω) = ‖x(tn+m)− x(tn)‖, (S5b)

Y3(ω) =

m∑
r=1

‖x(tn+r)− x(tn+r−1)‖, (S5c)

Y4(ω) =

(
1

m

m∑
r=1

‖x(tn+r)− x(tn+r−1)− Y3/m‖2
)1/2

, (S5d)

for sample time points tj = 5j min. Thus, the entries of the vector Y (ω) denote the random values of

� the displacement over the interval [tn, tn+m] in the positive x-direction,

� the net displacement,

� the path length,

� and the standard deviation of cell displacements over five-minute intervals,

for stochastic simulations ω of the electrotactic model in Eq. (3), given θ, p0, and u(t). Note that we can also

calculate the values of the function Y in Eq. (S5) for the experimentally observed data, xNoEF,i, for each cell index,

i. With a slight abuse of notation, we denote the summarised experimental data by yNoEF,i = Y (xNoEF,i).

For a given value of θ, the synthetic likelihood approach [21–23] assumes that the random value of Y (ω) under

the density pNoEF,i(ω | θ) is a Gaussian random variable with parameter-dependent mean µNoEF(θ) and covariance

ΣNoEF(θ). We estimate this mean and covariance with the sample mean and covariance of simulated summary

statistics Y (ωk), for k = 1, . . . , n, produced by simulating the autonomous model n times using the parameter value

θ over the interval t ∈ [0, 300]. The resulting approximation of each trajectory’s likelihood, L̃NoEF,n ≈ LNoEF, is

summarised as

L̃NoEF,n(xNoEF,i | θ) = N
(
yNoEF,i | µ̂NoEF(θ), Σ̂NoEF(θ)

)
i = 1, . . . , 50, (S6a)

µ̂NoEF(θ) =
1

n

n∑
k=1

Y (ωk), (S6b)

Σ̂NoEF(θ) =
1

n

n∑
k=1

(Y (ωk)− µ̂NoEF(θ))(Y (ωk)− µ̂NoEF(θ))T , (S6c)

ωk ∼ pNoEF(· | θ) k = 1, . . . , n, (S6d)

where N denotes the Gaussian density and where the chosen number of simulations, n, needs to be appropriately

large [22]. In our case, we choose n = 500.
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In the case of the electrotactic model with piecewise constant electric field input, uEF(t), we adapt the procedure

above to summarise the simulations and the training data with an eight-dimensional summary statistic. Treating the

intervals t ∈ [0, 60], [60, 180], [180, 300] separately, we summarise simulations, ω ∼ pNoEF(· | θ), and observations,

xEF,i, by calculating Y for each interval. We use only t ≤ 180 to calibrate the model, while holding back the

interval t ∈ [180, 360] for the purpose of testing. Thus, we combine the values of Y for the intervals t ∈ [0, 60] and

t ∈ [60, 180] into an eight-dimensional summary for calibrating the model. Using this eight-dimensional summary,

we adapt the synthetic likelihood procedure summarised in Eq. (S6) to calculate L̃EF,n(xEF,i | θ).
Finally, we can multiply each of these trajectory synthetic likelihoods into an overall synthetic likelihood for

the experimental data,

LNoEF,n(θ) =
∏
i

L̃NoEF,n(xNoEF,i | θ), (S7a)

LEF,n(θ) =
∏
i

L̃EF,n(xEF,i | θ), (S7b)

L(xNoEF,xEF | θ) ≈ Ln(θ) = LNoEF,n(θ)LEF,n(θ), (S7c)

each calculation of which requires n simulations of the autonomous model and n of the the electrotactic model.

3.2 SMC inference

In order to produce a sample from the posterior distribution, we use sequential Monte Carlo (SMC) with synthetic

likelihoods [21–27], as outlined in Algorithm 1. This method is chosen in order to exploit parallelisation, miti-

gating the computational burden of MCMC-based approaches that is incurred due to the large numbers of model

simulations required for accurate likelihood-free inference. SMC defines a sequence of intermediate importance

distributions that evolve towards the target posterior. This approach is particularly useful in comparison to naive

rejection sampling: since we will use non-informative priors, rejection sampling is too inefficient, as it proposes

parameters in extremely low-likelihood regions of parameter space too frequently. Importantly, for each value of θ,

the stochastic values of LNoEF,n(θ) and LEF,n(θ) can be called multiple times. At each call of these two likelihoods,

we do not recycle previously computed values for the synthetic likelihoods but instead simulate the models again.

Although this approach slows the inference procedure, it is necessary to ensure the correct stationary distribution

of the Markov chain steps, (13–14).

In Algorithm 1 we produce a weighted sample from the Bayesian synthetic likelihood approximation to the

posterior, π(θ | xNoEF,xEF). The intermediate distributions at each iteration are proportional to the tempered

distributions

πT (θ) ∝ [LNoEF,n(θ)LEF,n(θ)]
T
π(θ),

where the sequence of temperatures T evolves from 0 to 1. In Algorithm 1, we define the initial perturbation kernel,

K(· | θ) to be a multivariate Gaussian density with mean θ and diagonal covariance matrix, with component-wise

variances of 0.01, 0.0025 and 0.0001 for v, ∆W , and D, respectively, and 0.01 for each γi. The effective sample size,

ESS, used to adaptively choose the increment in temperature, is defined as

ESS({Wi}) =

(∑
i

Wi

)2

/
∑
j

W 2
j , (S8)

for any finite set of sample weights, Wi. We use N = 1000 particles, setting Nmin = 333 as the effective sample size

triggering resampling, and setting α = 0.8 as the decay rate of the effective sample size.

The effective sample size of the sample produced by Algorithm 1, as defined in Equation (S8), can be an over-
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Algorithm 1 Synthetic Likelihood SMC

Input: Observed summary statistics yNoEF and yEF; prior π; perturbation kernel K(· | θ); .
Output: Weighted sample set of parameters θi with weights Wi, from the synthetic likelihood approximation to

the posterior π(θ | xNoEF,xEF).
1: Sample N independent θi from π.
2: Set weights W 0

i = 1/N for i = 1, . . . , N .
3: Initialise T = 0 and r = 0.
4: repeat
5: Update r ← r + 1.
6: Find ∆T ∈ [∆Tmin, 1− T ] to solve ESS({W r

i }) = αESS({W r−1
i }), for weights W r

i such that

logW r
i = logW r−1

i + ∆T (logLNoEF,n(θi) + logLEF,n(θi)) ,

for the synthetic likelihoods, LNoEF,n(θi) and LEF,n(θi). Use ∆T = ∆Tmin or ∆T = 1− T if ESS({W r
i }) is,

respectively, uniformly less than or uniformly greater than αESS({W r−1
i }) on the interval [∆Tmin, 1− T ].

7: Update T ← T + ∆T .
8: if ESS({W r

i }) < Nmin then
9: Resample from {θi} according to weights W r

i .
10: Reset weights W r

i = 1/N .
11: Reset covariance of perturbation kernel, K, to equal the empirical covariance of the resampled parameter

set, {θi}.
12: end if
13: Propose perturbed parameter values θ?i ∼ K(· | θi) for i = 1, . . . , N .
14: Accept θi ← θ?i with Metropolis–Hastings probability[

LNoEF,n(θ?i )LEF,n(θ?i )

LNoEF,n(θi)LEF,n(θi)

]T
π(θ?i )K(θ?i | θi)
π(θi)K(θi | θ?i )

for i = 1, . . . , N .
15: until T = 1.
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estimate of the sample quality. The resampling step, in lines (9–11), tends to result in multiple particles with

equal parameter values. These particles do not always separate through the single MCMC step in (13–14). The

replicated parameter values in the sample thus degrade its quality, without being captured by the ESS calculation.

To improve the quality of the final sample produced by Algorithm 1, we post-process the posterior. First, the

final weighted Monte Carlo sample output from Algorithm 1 is resampled according to steps (9–11). Then, for

each resampled particle, we calculate 100 MCMC steps (13–14) using T = 1. This procedure effectively produces

1000 short Markov chains of length 100, each beginning from a particle from the target distribution, and with

stationary distribution equal to the target distribution. We use the end samples of each of these Markov chains as

a higher-quality, 1000-particle sample from the Bayesian synthetic likelihood approximation to the posterior, each

with equal weight. The resulting particles are checked to represent distinct parameter values, and thus every sample

generated is of size 1000, where ‘size’ refers to both particle numbers and effective sample size, which are identical.

4 Model validation

4.1 Autonomous data cross-validation

We first evaluate the modelling approach by comparing the model outputs trained to each of the two replicates alone

in turn, with the other replicate held back. Note that to produce a posterior based on the autonomous (control)

data set alone, we can simply adapt Algorithm 1 to use only LNoEF,n in calculating synthetic likelihoods (effectively

setting LEF,n = 1). The one-dimensional marginals of the resulting posterior, trained on the entire autonomous

data set, are shown in Figure 2 of the main text. The covariance structure of the posterior sample is depicted in

Figure S2.

If training on each of the two control data sets alone, we can construct an additional two posteriors. Figure S3

demonstrates that these posteriors closely overlap with one another, and with the posterior trained on the combined

data set. In addition to comparing the posteriors produced by each replicate, we can use repeated simulation to

produce posterior predictive distributions for each of the four summary statistics used for inference. These can

be compared to each of the observed data sets. In Figure S4, we plot posterior predictive distributions, based on

10 simulations for each of the 1000 sampled parameter values, for each of the three posteriors. In this figure, we

demonstrate that there is a good agreement between these posterior predictive distributions and the empirically

observed summary statistics for each replicate of the autonomous experiment.

We can quantify this agreement by estimating the log-likelihood of each data set, using the maximum likelihood

normal approximations to each of the three empirical distributions depicted in Figure S4. The quantified cross-

validation is shown in Table S1. For the posterior trained on replicate 1, the posterior predictive log-likelihood of the

data from replicate 1 is, as expected, slightly greater than that of replicate 2. However, the drop in log-likelihood for

the replicate 2 data is minimal, and thus the out-of-sample predictive performance of the posterior trained against

replicate 1 is good. A similar cross-validation argument, swapping the roles of replicate 1 and replicate 2, holds.

Thus, Figure S4 and Table S1 validate the suitability of the calibrated autonomous model.

Finally, the preliminary analysis of the observed displacements in each replicate, depicted in Figure S1, can be

replicated for simulated trajectories using parameters sampled from the posteriors trained on each replicate alone.

Figure S5 shows that model simulations produce qualitatively similar behaviour to the observed data. Importantly,

these characteristics of the trajectories were not explicitly used to calibrate the model. However, they have been

replicated by the calibrated model, which provides further evidence that the autonomous model is accurate.
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4.2 Electrotactic model validation

After validating the autonomous model against the control data, we perform the synthetic likelihood inference

procedure on the full training data set, comprising each observed trajectory from both control data sets, xNoEF,i

on t ∈ [0, 300], and the first section of each observed trajectory from the electrotactic data sets, xEF,i on t ∈
[0, 180]. Algorithm 1 is used to construct 16 separate posteriors, based on each of the 16 priors, πX , indexed

by X ⊂ {1, 2, 3, 4}, where γi > 0 if and only if i ∈ X. The greatest posterior likelihood is given by choosing

X = {4}, and thus setting γ1 = γ2 = γ3 = 0. For this choice of prior, we plot the one-dimensional marginals of the

resulting posterior in Figure 4 of the main text. To illustrate the covariance structure of the resulting posterior, the

two-dimensional marginals are given in Figure S6.

To validate the resulting posterior, in Figure S7 we compare the one-dimensional marginals of the parameters

v, ∆W , and D for the posteriors trained against the autonomous data set only, versus the posterior trained against

the entire training data set. The resulting posteriors are similar, showing that calibrating to the full training data

set refines the predictions of model calibrated to the autonomous data set alone.

Moreover, the posterior predictive distributions of the four summary statistics over 0 min to 300 min (for the

autonomous experiment) and each of 0 min to 60 min and 60 min to 180 min (for the electrotactic experiment),

depicted in Figure S8, show that the model is a close fit to the observed summarised trajectories in the training

data set. In particular, similarly to the autonomous model above, we have split the training data between replicates

1 and 2, and trained posteriors on each. We can perform cross-validation analysis, using the quantification of the

log-likelihood of the observed summary statistics according to the posterior log-likelihoods in Table S2. As with

the autonomous model, this table shows that the posteriors trained on each replicate provide a good prediction

of the log-likelihood of the summary statistics of the other replicate. Thus, the calibrated model provides good

out-of-sample predictive performance.

Note that, in addition to this cross-validation approach, a further test of the model validity is depicted in Figure 5

of the main manuscript. We use the electrotactic model, calibrated to the training data, xNoEF and xEF, to predict

the behaviour of the held-back test data set, xSwitch, comprising the observed cell trajectories over t ∈ [180, 360] after

the EF switches direction from the positive to negative x-direction. We demonstrate that the posterior predictive

distributions of the summary statistics are a good match to the unseen test data, further confirming the ability of

the calibrated model to predict cellular motility under dynamic EF inputs.
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Figure S1: Preliminary analysis of autonomous data sets. (a, b) Distributions of observed displacement distances
for each tracked cell in each autonomous data set. (c, d) Autocorrelations of observed displacement angles for all
tracked cells in each autonomous data set, for intervals at lags of 5min to 60min.
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Figure S2: Posterior sample from π(θ | xNoEF), generated by Algorithm 1 neglecting LEF,n, for identified parameters,
v, ∆W , and D. Diagonal plots are empirical histograms (as in Figure 2 in the main text). Off-diagonal heatmaps
represent empirical pairwise distributions, where brighter colours correspond to greater density. Axes in the bottom-
left are scaled to the prior support; the top-right scales are zoomed in to the region of greatest positive posterior
likelihood.
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Figure S3: Posterior distributions for the parameters of the autonomous model, trained to each replicate, and also
to the combined data set. Posterior samples have been generated using Algorithm 1, with MCMC post-processing,
and depicted as densities using a default KDE.
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Figure S4: Posterior predictive distributions of the summary statistics used for inference, for autonomous data
xNoEF only. For each posterior sample trained against replicate 1, replicate 2, and both replicates together, we
simulated 10,000 summary statistics to produce three posterior predictive distributions (kernel density estimates,
represented as solid curves). These are plotted with the observed summary statistics from each of the data sets.
The posterior predictive distributions for each replicate can thus be cross-validated against the data in the other
replicate: the log-likelihoods of the observations in each replicate, under each posterior predictive distribution, are
recorded in Table S1.
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(c) Control 1: Direction autocorrelation
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(d) Control 2: Direction autocorrelation

Figure S5: Analysis of simulated displacements over 5min intervals. (a, b) Distributions of simulated displacement
distances for cells simulated using parameters sampled from posteriors trained on each autonomous data set. (c,
d) Autocorrelations of simulated displacement angles for cells simulated using parameters sampled from posteriors
trained on each autonomous data set, for intervals at lags of 5min to 60min.
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Figure S6: Weighted sample from π(θ | xNoEF,xEF), generated by the completion of Algorithm 1 for identified
parameters, v, ∆W , D, and γ4. Plots are as described in Figure S2.
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Figure S7: One-dimensional projections for v, ∆W , and D of the empirical posteriors π(θ | xNoEF,xEF) and
π(θ | xNoEF), generated by Algorithm 1, trained on all data and the autonomous data, respectively.
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Figure S8: Posterior predictive distributions of all summary statistics used for inference with combined training
data xNoEF and xEF. Details are as for Figure S4, with log-likelihoods of the observations under each posterior
predictive distribution recorded in Table S2.
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Log likelihoods Replicate 1 training data:
27 autonomous trajectories

Replicate 2 training data:
26 autonomous trajectories

Replicate 1 posterior −558.6 −537.4
Replicate 2 posterior −559.9 −537.2
Combined posterior −559.3 −537.5

Table S1: Cross-validated log-likelihoods of training data under empirical posterior predictive distributions, trained
on data from the autonomous experiment only. Entries (i, j) correspond to the log-likelihood of observed data
from Replicate j under the posterior predictive distribution for posteriors trained on data from Replicate i, for
i, j ∈ {1, 2}. The bottom row corresponds to log-likelihoods under the posterior predictive distribution for the
posterior trained on the combined data set. This table quantifies the log-likelihood of Figure S4.
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Log likelihoods Replicate 1 training data:
27 autonomous trajectories
26 electrotactic trajectories

Replicate 2 training data:
26 autonomous trajectories
30 electrotactic trajectories

Replicate 1 posterior −1468 −1550
Replicate 2 posterior −1497 −1543
Combined posterior −1479 −1547

Table S2: Cross-validated log-likelihoods of training data under empirical posterior predictive distributions, trained
on all identified training data. Details are as for Table S1. This table quantifies the log-likelihood of Figure S8.
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