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Multifidelity Approximate Bayesian Computation\ast 
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Abstract. A vital stage in the mathematical modeling of real-world systems is to calibrate a model's parameters
to observed data. Likelihood-free parameter inference methods, such as approximate Bayesian com-
putation (ABC), build Monte Carlo samples of the uncertain parameter distribution by comparing
the data with large numbers of model simulations. However, the computational expense of gener-
ating these simulations forms a significant bottleneck in the practical application of such methods.
We identify how simulations of corresponding cheap, low-fidelity models have been used separately
in two complementary ways to reduce the computational expense of building these samples, at the
cost of introducing additional variance to the resulting parameter estimates. We explore how these
approaches can be unified so that cost and benefit are optimally balanced, and we characterize the
optimal choice of how often to simulate from cheap, low-fidelity models in place of expensive, high-
fidelity models in Monte Carlo ABC algorithms. The resulting early accept/reject multifidelity ABC
algorithm that we propose is shown to give improved performance over existing multifidelity and
high-fidelity approaches.
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1. Introduction. Throughout all scientific domains, predictive models of complex dynam-
ical systems require calibration against experimental data. Approximate Bayesian computa-
tion (ABC) is a popular likelihood-free method of parameter inference for complex models in
the biomedical sciences [29]. Rather than calculating the likelihood of the data for any given
parameter, the predictive model is simulated using that parameter. The likelihood is then
estimated based on how close, in some sense, the observed data is to the simulated data. A
classical technique is known as rejection sampling, where the likelihood is approximated with
a randomly assigned value of 1 (accept) or 0 (reject), where the probability of acceptance
is larger for simulations that are close to the data. The prior parameter distribution is ex-
plored by repeatedly evaluating this accept/reject decision for a large number of parameter
values sampled from the prior. Therefore, ABC sampling typically requires a large number
of simulations, which can form a bottleneck if the computational cost of each simulation is
prohibitively high.

The efficiency of ABC can be improved using parallelization [17], or with alternative sam-
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MULTIFIDELITY APPROXIMATE BAYESIAN COMPUTATION 115

pling strategies that reduce the number of required simulations by a more efficient exploration
of the prior distribution. These include Markov chain Monte Carlo (MCMC) [20] and se-
quential Monte Carlo (SMC) [22, 32] approaches, which ensure that simulated parameters are
sampled more often from high-likelihood regions of parameter space. A wider discussion of
these sampling strategies can be found in [29, Chap. 4]. Although the parameter space is ex-
plored more efficiently with these methods, there remains a high computational burden from
a large number of repeated simulations. Rather than focusing on exploring parameter space
efficiently, this paper instead focuses on reducing the computational burden of the Monte
Carlo sampling approach by using models that can be simulated more cheaply.

In this work, we consider a model as a map from a parameter vector to a distribution on an
output space. To simulate a model is to draw from the output distribution, the computational
burden of which is the simulation cost. Note that our use of ``model"" includes domain-
specific modeling choices and numerical implementation. Many ways to approximate a given
model with one that can be simulated more cheaply have been proposed and investigated,
such as model reduction [1, 2, 3, 30], discretization [13], surrogate modeling [27], and early
stopping [18]. Recent work [23, 24] unifies these approaches in the context of multifidelity
methods, which integrate information from many models of the same system to accelerate tasks
such as optimization, inference, and uncertainty quantification. Here, we use the terminology
of Peherstorfer, Willcox, and Gunzburger [24], denoting the model being calibrated as the high-
fidelity model, and other models as low-fidelity models. Simulations from low/high-fidelity
models are termed low/high-fidelity simulations; we assume that low-fidelity simulations are
cheaper than high-fidelity simulations.

Multilevel Monte Carlo (MLMC) [10, 11] is one example of a multifidelity estimation
approach. In its original formulation, continuous-time stochastic differential equations are
simulated using progressively finer, more accurate discretizations. For a given computational
budget, the statistical error of a Monte Carlo estimate can be reduced by using variance
reduction techniques that combine estimates built from simulations at different discretizations
with common input noise. The key aim of MLMC implementation is to optimize the number
of simulations using each of the different discretizations to reduce the estimator's variance.

Previous work has exploited multifidelity approaches to parameter inference [6, 7]. A
multilevel approach to ABC is considered in [33], where a set of ABC samples of increasing
simulation cost is produced by using progressively stricter rejection sampling thresholds, cho-
sen to optimize the efficiency of building the overall sample. In approximate ABC (aABC)
[4] a small number of simulations are used to create a low-fidelity statistical surrogate of the
model output across parameter space, to which ABC is applied. Other examples include
lazy ABC [25] and delayed acceptance ABC [5], where low-fidelity simulations are used to
decide whether the parameter can be rejected, without necessarily needing to simulate from
a high-fidelity model.

In this paper we apply multifidelity model management ideas to the specific case of rejec-
tion sampling ABC. We present a new method that allows a reject/accept decision to be made
for a parameter sample using a low-fidelity simulation alone, i.e., without necessarily requiring
a corresponding high-fidelity simulation. Section 2 introduces ABC and the motivation for
multifidelity approaches. We develop these into a new multifidelity rejection sampling algo-
rithm in section 3. In section 4 we describe how to analyze the performance of this algorithm
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116 THOMAS P. PRESCOTT AND RUTH E. BAKER

and optimize its inputs. The theoretical work is illustrated by applying the multifidelity re-
jection sampling algorithm to a stochastic synthetic biology model in section 5, which is also
used in section 6 to illustrate practical issues around implementation. We consider a second
example in section 7 and conclude with a view of potential future developments in section 8.
Our code, implemented in Julia, is available at https://github.com/tpprescott/mf-abc.

2. ABC and estimators. The goal of Bayesian parameter estimation is to update prior
beliefs about model parameters, \theta , encoded in a prior distribution \pi (\theta ). The updates depend
on experimental observations, y\mathrm{o}\mathrm{b}\mathrm{s}, subject to stochasticity such as measurement and envi-
ronmental noise. The parameterized model is denoted p(\cdot | \theta ), which defines a likelihood,
p(y\mathrm{o}\mathrm{b}\mathrm{s} | \theta ). The likelihood is combined with the prior distribution to give the posterior distri-
bution, p(\theta | y\mathrm{o}\mathrm{b}\mathrm{s}) \propto p(y\mathrm{o}\mathrm{b}\mathrm{s} | \theta )\pi (\theta ). We assume that the likelihood is not available, and that
we need to use ABC to estimate the posterior distribution.

The simplest version of ABC approximates the likelihood, p(y\mathrm{o}\mathrm{b}\mathrm{s} | \theta ), of observing y\mathrm{o}\mathrm{b}\mathrm{s}
under the model, based on simulations of the model being in some sense close enough to y\mathrm{o}\mathrm{b}\mathrm{s}.
We denote the output of a model simulation by y, often taking values in a low-dimensional
space. These model outputs are known as summary statistics and are an important design
choice for ABC methods [9], albeit often constrained by the experimental data y\mathrm{o}\mathrm{b}\mathrm{s} that can
be gathered practically. We can thus write the approximate posterior,

(2.1) p\mathrm{A}\mathrm{B}\mathrm{C}(\theta | y\mathrm{o}\mathrm{b}\mathrm{s}) =
p(d(y, y\mathrm{o}\mathrm{b}\mathrm{s}) < \epsilon | \theta )\pi (\theta )

Z
=

p(y \in \Omega (\epsilon ) | \theta )\pi (\theta )
Z

,

where the normalization constant Z ensures the distribution has unit integral, and \Omega (\epsilon ) =
\{ y | d(y, y\mathrm{o}\mathrm{b}\mathrm{s}) < \epsilon \} is the \epsilon -close neighborhood of y\mathrm{o}\mathrm{b}\mathrm{s}, where d(y, y\mathrm{o}\mathrm{b}\mathrm{s}) is a distance measure
between the observations, y\mathrm{o}\mathrm{b}\mathrm{s}, and model outputs, y. The approximate posterior also induces
an expectation,

\BbbE \mathrm{A}\mathrm{B}\mathrm{C}(F (\theta ) | y\mathrm{o}\mathrm{b}\mathrm{s}) =
\int 

F (\theta ) p\mathrm{A}\mathrm{B}\mathrm{C}(\theta | y\mathrm{o}\mathrm{b}\mathrm{s}) d\theta ,

which is the ABC approximation to the posterior expectation of an arbitrary function F .
The value of p(y \in \Omega (\epsilon ) | \theta ) is typically estimated using simulation. Given \theta \sim \pi (\cdot )

sampled from the prior distribution, we simulate y \sim p(\cdot | \theta ) from the model and calculate a
weight w(\theta ) = \BbbI (y \in \Omega (\epsilon )). If we consider w(\theta ) = 0 as rejection and w(\theta ) = 1 as acceptance
of \theta , the parameter is accepted (resp., rejected) if it generates summary statistics that are
close to (resp., far from) the observed data. Taking the expectation over y \sim p(\cdot | \theta ) gives
\BbbE (w(\theta ) | \theta ) = p(y \in \Omega (\epsilon ) | \theta ). Thus, w(\theta ) is an unbiased estimator of the ABC approximation
to the likelihood.

The weights w(\theta ) can be used in a Monte Carlo algorithm to build a weighted sample
\{ wi, \theta i\} . The simplest approach, the ABC rejection sampler (Algorithm 2.1), involves in-
dependently generating \theta i \sim \pi (\cdot ) for i = 1, . . . , N and setting wi = w(\theta i). The estimator
calculated by Algorithm 2.1 is

(2.2) \mu \mathrm{A}\mathrm{B}\mathrm{C}(F ) =

\sum 
iw(\theta i)F (\theta i)/N\sum 

j w(\theta j)/N
\approx Z\BbbE \mathrm{A}\mathrm{B}\mathrm{C}(F (\theta ) | y\mathrm{o}\mathrm{b}\mathrm{s})

Z
= \BbbE \mathrm{A}\mathrm{B}\mathrm{C}(F (\theta ) | y\mathrm{o}\mathrm{b}\mathrm{s}).
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MULTIFIDELITY APPROXIMATE BAYESIAN COMPUTATION 117

Algorithm 2.1. Rejection sampling ABC.

Input: observed measurements y\mathrm{o}\mathrm{b}\mathrm{s}; prior \pi (\cdot ); function F (\theta ); model p(\cdot | \theta ); distance
function d(\cdot , y\mathrm{o}\mathrm{b}\mathrm{s}); threshold \epsilon ; Monte Carlo sample size N .

for i = 1, . . . , N do
Generate \theta i \sim \pi (\cdot ).
Simulate yi \sim p(\cdot | \theta i) from the model.
Calculate wi = w(\theta i) = \BbbI (d(yi, y\mathrm{o}\mathrm{b}\mathrm{s}) < \epsilon ).

end for
Calculate \mu \mathrm{A}\mathrm{B}\mathrm{C}(F ) =

\sum N
i=1wiF (\theta i)/

\sum N
j=1wj .

return \{ wi, \theta i\} and \mu \mathrm{A}\mathrm{B}\mathrm{C}(F ).

The numerator and denominator of \mu \mathrm{A}\mathrm{B}\mathrm{C} are each unbiased estimators of Z\BbbE \mathrm{A}\mathrm{B}\mathrm{C}(F (\theta ) | y\mathrm{o}\mathrm{b}\mathrm{s})
and Z, respectively. Although the ratio is not an unbiased estimator of \BbbE \mathrm{A}\mathrm{B}\mathrm{C}(F | y\mathrm{o}\mathrm{b}\mathrm{s}), the
bias of \mu \mathrm{A}\mathrm{B}\mathrm{C}(F ) vanishes as the sample size N becomes large [29].

The key issue with Algorithm 2.1 is that a large number, N , of simulations yi \sim p(\cdot | \theta i) are
required to generate an accurate approximation of \BbbE \mathrm{A}\mathrm{B}\mathrm{C}(F (\theta ) | y\mathrm{o}\mathrm{b}\mathrm{s}). Rather than aiming to
reduce the number, N , of simulations [20, 32], this paper considers the use of computationally
cheap approximations to w(\theta ) = \BbbI (y \in \Omega (\epsilon )). The goal is to reduce the computational burden
of producing \mu \mathrm{A}\mathrm{B}\mathrm{C}(F ) for any fixed number, N , of Monte Carlo sample points.

3. Multifidelity approximate Bayesian computation. To reduce the computational cost
of rejection sampling ABC, we will exploit the concept of multifidelity modeling [23]. The
high-fidelity ``ground truth"" model, p(\cdot | \theta ), is assumed to be a computationally expensive,
accurate representation of the observed system. We consider the model to be a map from
parameter sample \theta to a distribution on an output space containing the observations, y\mathrm{o}\mathrm{b}\mathrm{s}. A
simulation from the high-fidelity model (i.e., a high-fidelity simulation) for a particular \theta is a
draw y \sim p(\cdot | \theta ) from this distribution, the computational cost of which is denoted by c(\theta ).

We also consider a low-fidelity model, \~p(\cdot | \theta ), which is an alternative map from the pa-
rameter sample \theta to a distribution on an output space. Note that the output space of the
low-fidelity model may be different from that of the high-fidelity model; we assume that the
output space is induced by taking potentially different measurements \~y\mathrm{o}\mathrm{b}\mathrm{s} from the same ex-
periment generating the measurements comprising y\mathrm{o}\mathrm{b}\mathrm{s}. A simulation from the low-fidelity
model (i.e., a low-fidelity simulation) is a draw \~y \sim \~p(\cdot | \theta ), the computational cost of which is
denoted by \~c(\theta ). We will assume that low-fidelity simulations are, on average, much cheaper
than high-fidelity simulations, such that \BbbE (\~c(\theta )) \ll \BbbE (c(\theta )). In direct analogy with Algo-
rithm 2.1, we define a distance function \~d(\~y, \~y\mathrm{o}\mathrm{b}\mathrm{s}), measuring how close the simulated data is
to the observed data, and a threshold \~\epsilon . These define a weight \~w(\theta ) = \BbbI (\~y \in \~\Omega (\~\epsilon )), where we
write \~\Omega (\~\epsilon ) = \{ \~y | \~d(\~y, \~y\mathrm{o}\mathrm{b}\mathrm{s}) < \~\epsilon )\} for the neighborhood of the data.

The sample \{ \~w(\theta i), \theta i\} will be built more quickly than \{ w(\theta i), \theta i\} , for a fixed N . However,
this computational speedup comes at the cost of bias, which arises because the likelihood of the
low-fidelity model does not equal that of the high-fidelity model. The ABC approximations
to each likelihood are also not identical, since \BbbE ( \~w(\theta )) = \~p(\~y \in \~\Omega (\~\epsilon ) | \theta ) \not = p(y \in \Omega (\epsilon ) | \theta ) =
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118 THOMAS P. PRESCOTT AND RUTH E. BAKER

\BbbE (w(\theta )). The bias is compounded by the fact that the observations y\mathrm{o}\mathrm{b}\mathrm{s} and \~y\mathrm{o}\mathrm{b}\mathrm{s}, distance
functions d and \~d, and thresholds \epsilon and \~\epsilon may be specified independently of one another.

The goal of the remainder of this section is to consider how best to use the information
generated by the low-fidelity model to reduce the reliance on the high-fidelity model in esti-
mating p\mathrm{A}\mathrm{B}\mathrm{C}(\theta | y\mathrm{o}\mathrm{b}\mathrm{s}). We aim to produce an unbiased estimate of the ABC approximation
to the likelihood generated by the high-fidelity model, p(y \in \Omega (\epsilon ) | \theta ) \approx p(y\mathrm{o}\mathrm{b}\mathrm{s} | \theta ).

3.1. Early rejection ABC. As a starting point, we will describe an existing approach that
uses the low-fidelity model, \~p(\cdot | \theta ), to reduce the cost of calculating an unbiased estimator of
p(y \in \Omega (\epsilon ) | \theta ). A version of this approach is used in lazy ABC [25] and is also the key idea
of delayed acceptance MCMC [5], but here we will refer to it as early rejection ABC. Recall
that the weight w(\theta ) is an unbiased estimator of the ABC approximation to the likelihood,
p(y \in \Omega (\epsilon ) | \theta ), and requires a simulation of the high-fidelity model. The early rejection ABC
approach generates an alternative unbiased estimator, w\mathrm{e}\mathrm{r}(\theta ), which saves computational costs
by using the result of the low-fidelity simulation to decide whether to simulate the high-fidelity
model or reject the parameter early.

For a sample \theta from the prior, we first simulate \~y \sim \~p(\cdot | \theta ) from the low-fidelity model at
a cost \~c. A continuation probability \eta (\~y) \in (0, 1] is then defined, dependent on the result of
the low-fidelity simulation. With probability 1 - \eta (\~y), the parameter is rejected early ; without
simulating y \sim p(\cdot | \theta ), and therefore avoiding simulation cost c, the weight is set to w\mathrm{e}\mathrm{r} = 0.
Otherwise, the high-fidelity simulation y \sim p(\cdot | \theta ) is generated and the parameter is accepted
or rejected according to \BbbI (y \in \Omega (\epsilon )), as before. If accepted, however, the weight is set to
w\mathrm{e}\mathrm{r} = 1/\eta (\~y) rather than 1. For the uniform random variable U \sim Unif(0, 1), we can write

(3.1) w\mathrm{e}\mathrm{r}(\theta ) =
\BbbI (U < \eta (\~y))

\eta (\~y)
\BbbI (y \in \Omega (\epsilon )).

Taking the expectation with respect to U recovers w(\theta ), and hence \BbbE (w\mathrm{e}\mathrm{r}(\theta )) = \BbbE (w(\theta )) =
p(y \in \Omega (\epsilon ) | \theta ). Thus the early rejection estimate, w\mathrm{e}\mathrm{r}(\theta ), is unbiased.

The improved performance of early rejection ABC relies on the low-fidelity simulation
output, \~y, being informative about the high-fidelity simulation output, y, and on the careful
definition of the continuation probabilities \eta (\~y). First, as we will show in subsection 4.1,
the expected time taken to compute w\mathrm{e}\mathrm{r}(\theta ) is less than for w(\theta ) if \BbbE (\eta (\~y)) < 1  - \BbbE (\~c)/\BbbE (c).
Furthermore, suppose that \~y is such that, with high probability, y /\in \Omega (\epsilon ) and hence \theta will
be rejected. Rather than generate \BbbI (y \in \Omega (\epsilon )) at cost c, it would be preferable to reject \theta 
early. For such \~y, this is achieved by ensuring \eta (\~y) is small. Conversely, if \~y is such that, with
high probability, y \in \Omega (\epsilon ), then \theta is more likely to be accepted, corresponding to a positive
value of w\mathrm{e}\mathrm{r}(\theta ). It follows that \eta (\~y) should be larger, allowing a positive weight, meaning that
y is more likely to be generated. However, the converse uncovers an important asymmetry
underlying the early rejection approach. If \~y is such that y \in \Omega (\epsilon ) with high probability, then
an efficient approach could be to assign a positive weight to \theta without simulating y \sim p(\cdot | \theta )
from the high-fidelity model. However, such an early acceptance is not possible within the
framework of early rejection.

3.2. Early decision ABC. Instead of using \~y to determine whether or not to simulate the
high-fidelity model, we now assume that this decision is independent of \~y. We can instead
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use \~y to determine the weight for \theta if the high-fidelity model is not simulated. As with early
rejection, for a given \theta we first simulate \~y \sim \~p(\cdot | \theta ) from the low-fidelity model. Now suppose
a continuation probability \eta \in (0, 1] is fixed (independently of \~y). Then, with probability
1 - \eta , the parameter \theta is accepted or rejected based on the early decision, \BbbI (\~y \in \~\Omega (\~\epsilon )), without
simulating the high-fidelity model and thus avoiding cost c. Otherwise, with probability \eta ,
we simulate y \sim p(\cdot | \theta ) from the high-fidelity model and calculate \BbbI (y \in \Omega (\epsilon )) to determine
acceptance or rejection, as before. The appropriate weight for \theta is

(3.2) w\mathrm{e}\mathrm{d}(\theta ) = \BbbI (\~y \in \~\Omega (\~\epsilon )) +
\BbbI (U < \eta )

\eta 

\Bigl[ 
\BbbI (y \in \Omega (\epsilon )) - \BbbI (\~y \in \~\Omega (\~\epsilon ))

\Bigr] 
,

where, again, taking the expectation over U \sim Unif(0, 1) recovers w(\theta ). Thus, w\mathrm{e}\mathrm{d}(\theta ) is
another unbiased estimator for p(y \in \Omega (\epsilon ) | \theta ). Note that we can consider w\mathrm{e}\mathrm{d}(\theta ) as a
multilevel weight, since it is a randomized multilevel estimator for p(y \in \Omega (\epsilon ) | \theta ) [28].

Note that, by allowing early acceptance, w\mathrm{e}\mathrm{d}(\theta ) can take negative values. In particular,
if we simulate U \leq \eta , \~y \in \~\Omega (\~\epsilon ), and y /\in \Omega (\epsilon ), then w\mathrm{e}\mathrm{d} = 1  - 1/\eta \leq 0. This is a necessary
consequence of early acceptance, which may overestimate the posterior weight on \theta where
\~y \in \~\Omega (\~\epsilon ). Negative weights mean that the constructed set \{ w\mathrm{e}\mathrm{d}(\theta i), \theta i\} cannot be interpreted
as a weighted sample from the ABC posterior. Nevertheless, it is still valid to use \{ w\mathrm{e}\mathrm{d}(\theta i), \theta i\} 
in the estimator \mu \mathrm{A}\mathrm{B}\mathrm{C}(F ).

3.3. Multifidelity ABC: Early acceptance and early rejection. We are now in a posi-
tion to introduce early accept/reject multifidelity ABC. The approaches discussed in subsec-
tions 3.1 and 3.2 use the low-fidelity simulation output, \~y \sim \~p(\cdot | \theta ), in different ways. The
early rejection weight w\mathrm{e}\mathrm{r}(\theta ) uses \~y to determine whether to simulate the high-fidelity model.
In contrast, when calculating the early decision weight w\mathrm{e}\mathrm{d}(\theta ), we determine whether to sim-
ulate the high-fidelity model independently of \~y. However, w\mathrm{e}\mathrm{d} uses \~y to determine the early
decision that is to be made (i.e., accept or reject \theta ) if the high-fidelity model is not simulated.
The following expression combines these ideas in a more general, multifidelity weight,

(3.3) w\mathrm{m}\mathrm{f}(\theta ) = \BbbI (\~y \in \~\Omega (\~\epsilon )) +
\BbbI (U < \eta (\~y))

\eta (\~y)

\Bigl[ 
\BbbI (y \in \Omega (\epsilon )) - \BbbI (\~y \in \~\Omega (\~\epsilon ))

\Bigr] 
,

where the continuation probability and early decision both depend on the output of the low-
fidelity simulation.

As with early rejection ABC, the choice of continuation probability \eta (\~y) is important to
the performance of w\mathrm{m}\mathrm{f} . A natural form of continuation probability, and the one we consider
here, is

(3.4) \eta (\~y) = \eta 1\BbbI (\~y \in \~\Omega (\~\epsilon )) + \eta 2\BbbI (\~y /\in \~\Omega (\~\epsilon )).

This choice of \eta (\~y) allows both early acceptance and early rejection with constant probabilities
1  - \eta 1 and 1  - \eta 2, respectively. We will therefore refer to using w\mathrm{m}\mathrm{f} and \eta (\~y) given by (3.3)
and (3.4) as early accept/reject multifidelity ABC. Note that constraining \eta 1 = \eta 2 makes \eta 
independent of \~y and recovers the early decision weight w\mathrm{e}\mathrm{d}. Fixing \eta 1 = 1 means that there is
no early acceptance and recovers the early rejection weight w\mathrm{e}\mathrm{r}. Finally, putting \eta 1 = \eta 2 = 1
recovers the original ABC rejection sampling weight w.
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Using \eta (\~y) in (3.4) means that w\mathrm{m}\mathrm{f}(\theta ) can take one of only four possible values:

(3.5) w\mathrm{m}\mathrm{f}(\theta ) =

\left\{                     

1, \~y \in \~\Omega (\~\epsilon ) \cap U \geq \eta 1 (early accept),

0, \~y /\in \~\Omega (\~\epsilon ) \cap U \geq \eta 2 (early reject),

1, \~y \in \~\Omega (\~\epsilon ) \cap y \in \Omega (\epsilon ) \cap U < \eta 1 (checked true positive),

0, \~y /\in \~\Omega (\~\epsilon ) \cap y /\in \Omega (\epsilon ) \cap U < \eta 2 (checked true negative),

1 - 1/\eta 1, \~y \in \~\Omega (\~\epsilon ) \cap y /\in \Omega (\epsilon ) \cap U < \eta 1 (checked false positive),

0 + 1/\eta 2, \~y /\in \~\Omega (\~\epsilon ) \cap y \in \Omega (\epsilon ) \cap U < \eta 2 (checked false negative).

These cases imply the implementation, Algorithm 3.1, of a Monte Carlo algorithm to estimate
\BbbE \mathrm{A}\mathrm{B}\mathrm{C}(F (\theta ) | y\mathrm{o}\mathrm{b}\mathrm{s}). They also have the interesting consequence that, in addition to computa-
tional speedup, the performance of Algorithm 3.1 will be dependent on the receiver operating
characteristics (ROCs) [21] of the cheap, biased binary classifier \~w(\theta ) = \BbbI (\~y \in \~\Omega (\~\epsilon )) as an
approximation of the expensive binary classifier w(\theta ) = \BbbI (y \in \Omega (\epsilon )).

Algorithm 3.1. Early accept/reject multifidelity ABC.

Input: observations y\mathrm{o}\mathrm{b}\mathrm{s} and \~y\mathrm{o}\mathrm{b}\mathrm{s} from a common experiment; prior \pi (\cdot ); function F (\theta );
low- and high-fidelity models \~p(\cdot | \theta ) and p(\cdot | \theta ); distance functions \~d(\cdot , \~y\mathrm{o}\mathrm{b}\mathrm{s}) and d(\cdot , y\mathrm{o}\mathrm{b}\mathrm{s});
thresholds \~\epsilon and \epsilon ; continuation probabilities \eta 1 and \eta 2; Monte Carlo sample size N .

for i = 1, . . . , N do
Generate \theta i \sim \pi (\cdot ) and U \sim Unif(0, 1).
Simulate \~yi \sim \~p(\cdot | \theta i) from low-fidelity model.
Calculate \~w = \BbbI ( \~d(\~yi, \~y\mathrm{o}\mathrm{b}\mathrm{s}) < \~\epsilon ).
Set wi = \~w.
Set \eta = \eta 1 \~w + \eta 2(1 - \~w).
if U < \eta then
Simulate yi \sim p(\cdot | \theta i) from the high-fidelity model.
Calculate w = \BbbI (d(yi, y\mathrm{o}\mathrm{b}\mathrm{s}) < \epsilon ).
Update wi = wi + (w  - wi)/\eta .

end if
end for
Calculate \mu \mathrm{A}\mathrm{B}\mathrm{C}(F ) =

\sum N
i=1wiF (\theta i)/

\sum N
i=1wi.

return \{ wi, \theta i\} and \mu \mathrm{A}\mathrm{B}\mathrm{C}(F ).

In common with many rejection-sampling approaches, this algorithm is embarrassingly
parallel: the for-loop can be implemented across many independent workers. Furthermore,
rejection sampling ABC often relies on a threshold value being specified a posteriori to ensure
a specific acceptance rate; the distances are ranked and \epsilon is chosen so that the parameter
proposals corresponding to the smallest quantile of distances are taken into the sample. In
this setting, we could adapt the algorithm above into two serial components (each of which can
still be parallelized). The first component applies the a posteriori thresholding approach to
the low-fidelity model alone, giving weights 0 or 1 to each proposed parameter. In the second,
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the high-fidelity model is simulated using a random subset of the parameter proposals, chosen
based on the continuation probabilities. The weights are then corrected to give w\mathrm{m}\mathrm{f} ; at this
point \epsilon can be chosen to achieve a desired effective sample size (introduced in the next section).
For simplicity, we only consider the case of fixed \~\epsilon and \epsilon in the following.

4. Performance of early accept/reject multifidelity ABC. This section considers the
performance of Algorithm 3.1 in constructing the Monte Carlo sample \{ w\mathrm{m}\mathrm{f}(\theta i), \theta i\} . We
discuss how to define the sample quality, and thus how to choose the inputs (\eta 1, \eta 2) to optimize
performance. We will show that the multifidelity approach provides improved performance
over rejection sampling ABC, and that early acceptance adds to the benefit of early rejection.

4.1. Effective sample size and efficiency. Consider a weighted sample \{ wi, \theta i\} output
from an importance sampling algorithm. The weights wi correspond to any weighting, for
example, w(\theta i) or w\mathrm{m}\mathrm{f}(\theta i). We denote the random variable taking values wi by W . A common
measure of the quality of such a sample is its effective sample size (ESS), defined as

(4.1) ESS =
(
\sum 

iwi)
2\sum 

iw
2
i

= N
(
\sum 

iwi/N)2\sum 
iw

2
i /N

\approx N
\BbbE (W )2

\BbbE (W 2)
,

where the approximation is taken in the limit as N \rightarrow \infty , and the expectations are across the
proposal distribution---in this case, the prior parameter distribution, \theta \sim \pi (\cdot ). Note that ESS
is inversely proportional to a first order approximation of the variance of \mu ABC(F ) output by
Algorithm 3.1, for any F ; see section SM1 in the supplementary material for more details.
Hence, we will use ESS without requiring wi \geq 0 for all i.

Proposition 4.1. Assume one or both of the following hold:
1. \eta 1 < 1 and the false positive probability, \BbbP 

\bigl( \bigl\{ 
\~y \in \~\Omega (\~\epsilon )

\bigr\} 
\cap \{ y /\in \Omega (\epsilon )\} 

\bigr) 
> 0;

2. \eta 2 < 1 and the false negative probability \BbbP 
\bigl( \bigl\{ 

\~y /\in \~\Omega (\~\epsilon )
\bigr\} 
\cap \{ y \in \Omega (\epsilon )\} 

\bigr) 
> 0.

In the limit as N \rightarrow \infty , the ESS of the weighted sample \{ w\mathrm{m}\mathrm{f}(\theta i), \theta i\} is smaller than the ESS
of the weighted sample \{ w(\theta i), \theta i\} .

Proof. The conditional expectations \BbbE (w(\theta )) = \BbbE (w\mathrm{m}\mathrm{f}(\theta )) = p(y \in \Omega (\epsilon ) | \theta ) are equal and
unbiased. It follows that \BbbE (w) = \BbbE (w\mathrm{m}\mathrm{f}) = p(y \in \Omega (\epsilon )), and hence that the numerators of
the limiting value of the ESS in (4.1) are equal for wi = w(\theta i) and wi = w\mathrm{m}\mathrm{f}(\theta i).

It can be shown that \BbbE (w2) = Z = p(y \in \Omega (\epsilon )). Using (3.5) and taking expectations, we
find

\BbbE (w2
\mathrm{m}\mathrm{f}) = \BbbE (w2) +

\biggl( 
1

\eta 1
 - 1

\biggr) 
\BbbP 
\Bigl( \Bigl\{ 

\~y \in \~\Omega (\~\epsilon )
\Bigr\} 
\cap \{ y /\in \Omega (\epsilon )\} 

\Bigr) 
+

\biggl( 
1

\eta 2
 - 1

\biggr) 
\BbbP 
\Bigl( \Bigl\{ 

\~y /\in \~\Omega (\~\epsilon )
\Bigr\} 
\cap \{ y \in \Omega (\epsilon )\} 

\Bigr) 
.(4.2)

Assuming at least one of the two conditions in the statement gives \BbbE (w2
\mathrm{m}\mathrm{f}) > \BbbE (w2), the result

follows from this inequality.

The goal of the multifidelity approach to rejection sampling is to build a sample more
efficiently than with standard rejection sampling ABC. The smaller ESS produced by Algo-
rithm 3.1 is the cost of early acceptance and early rejection. Equation (4.2) shows that the
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marginal cost of decreasing either \eta 1 or \eta 2 is dependent on the probability of either a false
positive or false negative, respectively. Clearly, if the approximation \~y is a good one for y
(in terms of the set membership \~y \in \~\Omega (\~\epsilon ) as a predictor of y \in \Omega (\epsilon )), then the cost of early
acceptance or early rejection is reduced.

Having shown that a smaller ESS is the cost of early acceptance and early rejection, we
can now show how this is balanced against the intended benefit of reducing computational
burden. Suppose that Ti is the time it takes to generate the weight wi, with total simulation
time T\mathrm{t}\mathrm{o}\mathrm{t} =

\sum 
i Ti. A measure of the efficiency of building the sample \{ wi, \theta i\} is the ratio of

ESS to total simulation time,

(4.3)
ESS

T\mathrm{t}\mathrm{o}\mathrm{t}
=

(
\sum 

iwi/N)2

(
\sum 

iw
2
i /N)(

\sum 
i Ti/N)

\approx \BbbE (W )2

\BbbE (W 2)\BbbE (T )
,

where we have considered the limit as N \rightarrow \infty and the expectations are taken across \theta \sim \pi (\cdot ).
The expected cost \BbbE (T ) of computing w\mathrm{m}\mathrm{f}(\theta ) over \theta \sim \pi (\cdot ) is

\BbbE (T ) = \BbbE (\~c) + \eta 1\BbbE (c | \~y \in \~\Omega (\~\epsilon ))\BbbP (\~y \in \~\Omega (\~\epsilon )) + \eta 2\BbbE (c | \~y /\in \~\Omega (\~\epsilon ))\BbbP (\~y /\in \~\Omega (\~\epsilon )),

where \~c(\theta ) is the simulation cost of \~y \sim \~p(\cdot | \theta ) and c(\theta ) is that of y \sim p(\cdot | \theta ). If \eta 1, \eta 2 <
1  - (\BbbE (\~c)/\BbbE (c)), then the expected simulation time \BbbE (T ) to calculate w\mathrm{m}\mathrm{f} is less than the
expected cost \BbbE (c) of calculating w. The computational cost of calculating w\mathrm{m}\mathrm{f}(\theta ) is decreased
for smaller values of \eta 1, \eta 2, to a lower bound of \~c(\theta ). Hence, the benefit of decreasing \eta 1 and
\eta 2 is a saving in computational cost, traded off against a decrease in the ESS.

4.2. Optimal continuation probabilities. Algorithm 3.1 takes the continuation probabil-
ities (\eta 1, \eta 2) as an input, producing a sample \{ w\mathrm{m}\mathrm{f}(\theta i), \theta i\} . We now consider the choice of
(\eta 1, \eta 2) that optimally balances the benefit of reducing the simulation time against the cost
of reducing the ESS. Our approach is to choose (\eta 1, \eta 2) to maximize the limiting efficiency of
the algorithm, defined in (4.3) as the ratio ESS/T\mathrm{t}\mathrm{o}\mathrm{t} as N \rightarrow \infty .

The numerator, \BbbE (w\mathrm{m}\mathrm{f})
2 = p(y \in \Omega (\epsilon ))2, in (4.3) is independent of \eta 1 and \eta 2. Therefore

the efficiency is maximized when the denominator, \phi (\eta 1, \eta 2) = \BbbE (w2
\mathrm{m}\mathrm{f})\BbbE (T ), is minimized. We

define

ptp = \BbbP 
\Bigl( \Bigl\{ 

\~y \in \~\Omega (\~\epsilon )
\Bigr\} 
\cap \{ y \in \Omega (\epsilon )\} 

\Bigr) 
,(4.4a)

pfp = \BbbP 
\Bigl( \Bigl\{ 

\~y \in \~\Omega (\~\epsilon )
\Bigr\} 
\cap \{ y /\in \Omega (\epsilon )\} 

\Bigr) 
,(4.4b)

pfn = \BbbP 
\Bigl( \Bigl\{ 

\~y /\in \~\Omega (\~\epsilon )
\Bigr\} 
\cap \{ y \in \Omega (\epsilon )\} 

\Bigr) 
,(4.4c)

cp = \BbbE (c | \~y \in \~\Omega (\~\epsilon ))\BbbP (\~y \in \~\Omega (\~\epsilon )),(4.4d)

cn = \BbbE (c | \~y /\in \~\Omega (\~\epsilon ))\BbbP (\~y /\in \~\Omega (\~\epsilon ))(4.4e)

to write the objective function

(4.5) \phi (\eta 1, \eta 2) =

\biggl( \bigl( 
ptp  - pfp

\bigr) 
+

1

\eta 1
pfp +

1

\eta 2
pfn

\biggr) \biggl( 
\BbbE (\~c) + \eta 1cp + \eta 2cn

\biggr) 
.
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The false positive and false negative probabilities, pfp and pfn, respectively, are the average
rates at which simulations from the high- and low-fidelity models are different, defined in
terms of being close to the data. The average computation time, \BbbE (c) = cp + cn, to simulate
the high-fidelity model is partitioned conditionally on the value of \BbbI (\~y \in \~\Omega (\~\epsilon )).

Lemma 4.2. The denominator \phi (\eta 1, \eta 2) has a unique minimizer on [0,\infty )2 if and only if
\BbbE 
\bigl( 
(w  - \~w)2

\bigr) 
< \BbbE (w2). The values of \eta 1, \eta 2 \geq 0 that minimize \phi over [0,\infty )2 are

(4.6) (\eta  \star 1, \eta 
 \star 
2) =

\Biggl( \sqrt{} 
Rp

R0
,

\sqrt{} 
Rn

R0

\Biggr) 
,

where

Rp =
pfp

cp/\BbbE (\~c)
=

\BbbP (y /\in \Omega (\epsilon ) | \~y \in \~\Omega (\~\epsilon ))

\BbbE (c | \~y \in \~\Omega (\~\epsilon ))/\BbbE (\~c)
,

Rn =
pfn

cn/\BbbE (\~c)
=

\BbbP (y \in \Omega (\epsilon ) | \~y /\in \~\Omega (\~\epsilon ))

\BbbE (c | \~y /\in \~\Omega (\~\epsilon ))/\BbbE (\~c)
,

R0 = ptp  - pfp = \BbbE (w2) - \BbbE 
\Bigl( 
( \~w  - w)2

\Bigr) 
.

If R0 \leq 0, then \nabla \phi \not = 0 globally.

Lemma 4.3. The value of \eta 1 \in (0, 1] that minimizes \phi (\eta 1, 1) is

\=\eta 1 = min

\Biggl\{ 
1, \eta  \star 1

\bigg/ \sqrt{} 
1 + pfn/R0

1 + cn/\BbbE (\~c)

\Biggr\} 
.

The value of \eta 2 \in (0, 1] that minimizes \phi (1, \eta 2) is

\=\eta 2 = min

\Biggl\{ 
1, \eta  \star 2

\bigg/ \sqrt{} 
1 + pfp/R0

1 + cp/\BbbE (\~c)

\Biggr\} 
.

Corollary 4.4. If max\{ Rp, Rn\} \leq R0, then the continuation probabilities \^\eta 1, \^\eta 2 \in (0, 1] that
maximize the efficiency, ESS/T\mathrm{t}\mathrm{o}\mathrm{t}, of the sample \{ w\mathrm{m}\mathrm{f}(\theta i), \theta i\} built by Algorithm 3.1 are equal
to \eta  \star 1, \eta 

 \star 
2 \in (0, 1] in (4.6). Conversely, if max\{ Rp, Rn\} > R0, then at least one of \eta  \star 1, \eta 

 \star 
2 > 1,

and the values of \^\eta 1, \^\eta 2 \in (0, 1] that maximize the efficiency, ESS/T\mathrm{t}\mathrm{o}\mathrm{t}, are

(\^\eta 1, \^\eta 2) =

\Biggl\{ 
(1, \=\eta 2) , \phi (1, \=\eta 2) \leq \phi (\=\eta 1, 1),

(\=\eta 1, 1) else,

where \=\eta 1, \=\eta 2 are given in Lemma 4.3.

Proof. The proofs of Lemmas 4.2 and 4.3 and Corollary 4.4 are sketched in the supple-
mentary material, section SM2.

The optimal continuation probabilities can be interpreted in terms of the ROC analysis of
the quality of the low-fidelity classifier \~w(\theta ) = \BbbI (\~y \in \~\Omega (\~\epsilon )) as an approximation of w(\theta ) = \BbbI (y \in 
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\Omega (\epsilon )), and the computational saving of the low-fidelity model over the high-fidelity model. The
false discovery rate, \BbbP (y /\in \Omega (\epsilon ) | \~y \in \~\Omega (\epsilon )), and the false omission rate, \BbbP (y \in \Omega (\epsilon ) | \~y /\in \~\Omega (\epsilon )),
are conditional versions of the false positive and false negative rates in (4.4b) and (4.4c). The
ratio Rp is the false discovery rate, divided by the expected time to simulate the high-fidelity
model when \~y \in \~\Omega (\~\epsilon ), expressed in units of the low-fidelity simulation cost. Smaller values
of Rp occur when the false discovery rate is small, and where the low-fidelity model is much
cheaper than the high-fidelity model. A similar interpretation exists for Rn, defined as the
false omission rate divided by the expected time taken to simulate the high-fidelity model
when \~y /\in \~\Omega (\~\epsilon ), again in units of the low-fidelity simulation cost.

The smallest values of \eta  \star 1, \eta 
 \star 
2 are found when pfp and pfn are as small as possible, that

is, where the accuracy of \~w as an approximation to w is greatest. As the accuracy decreases,
the benefit to the efficiency of putting \eta 1, \eta 2 < 1 becomes progressively less, until the opti-
mal choice is for one or both of \eta 1, \eta 2 to be unity. In such cases, \~w is not a good enough
approximation to w to recommend any early acceptance and/or rejection at all.

The optimal continuation probabilities make it clear that the early accept/reject multi-
fidelity approach relies on (i) the false discovery rate \BbbP (y /\in \Omega (\epsilon ) | \~y \in \~\Omega (\~\epsilon )) and the false
omission rate \BbbP (y \in \Omega (\epsilon ) | \~y /\in \~\Omega (\~\epsilon )) being suitably small, and (ii) the simulation costs
\BbbE (c | \~y \in \~\Omega (\~\epsilon )) and \BbbE (c | \~y /\in \~\Omega (\~\epsilon )) of the high-fidelity model being suitably large in comparison
to the average simulation time, \BbbE (\~c), of the low-fidelity model.

5. Example: Stochastic repressilator model. We now illustrate the multifidelity ap-
proach to rejection sampling by its application to a stochastic model of a synthetic genetic
network known as the repressilator [8]. This synthetic genetic network consists of three genes,
G1, G2, and G3, which are transcribed and translated into proteins P1, P2, and P3, respec-
tively. Transcription of G2 is repressed by P1, transcription of G3 is repressed by P2, and
transcription of G1 is repressed by P3. This cycle of repression is known to cause oscillatory
behavior.

5.1. Model. The specific form of the model is adapted from that used in [32]. The
chemical reaction description of the model is

\alpha 0+\alpha f(pj) -  -  -  -  -  -  - \rightarrow mi
1 - \rightarrow \emptyset for (i, j) = (1, 3), (2, 1), and (3, 2),(5.1a)

mi
\beta  - \rightarrow mi + pi for i = 1, 2, 3,(5.1b)

pi
\beta  - \rightarrow \emptyset for i = 1, 2, 3,(5.1c)

where the decreasing function f(p) = Kn
h/(K

n
h + pn) models the repression of mRNA tran-

scription by protein. The goal of parameter identification will be to identify the parameters n
and Kh. For the purposes of this example, the observed data y\mathrm{o}\mathrm{b}\mathrm{s} will be synthetic, generated
by simulating the model in (5.1) using the ``real"" parameter values: \alpha 0 = 1, \beta = 5, \alpha = 1000,
n = 2, and Kh = 20, to a final time of Tfi\mathrm{n}\mathrm{a}\mathrm{l} = 10. For the parameter inference task, the values
of \alpha 0, \alpha , and \beta are fixed at these nominal values. The remaining parameters, n and Kh, are
uncertain with prior distributions n \sim U(1, 4) and Kh \sim U(10, 30). The initial conditions are
fixed at (m1,m2,m3) = (0, 0, 0) and (p1, p2, p3) = (40, 20, 60).
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5.2. Data generation. We used Gillespie's stochastic simulation algorithm (SSA) [12]
to generate the observed data y\mathrm{o}\mathrm{b}\mathrm{s} for the nominal parameter values. Then, for each of
N = 5 \times 106 sample points (n,Kh) from the uniform prior, we generated (i) a simulation
\~y \sim \~p(\cdot | \theta ) from a low-fidelity tau-leap [13] implementation of (5.1), and (ii) a simulation
y \sim p(\cdot | \theta ) from the high-fidelity SSA implementation of (5.1). For more details of the
stochastic simulations, we refer the reader to the tutorial [16] and to section SM3 in the
supplementary material.

For each fidelity, the summary statistics are vectors of each species' molecule count at
integer time-points t = 0, 1, . . . , 10, such that y\mathrm{o}\mathrm{b}\mathrm{s} = \~y\mathrm{o}\mathrm{b}\mathrm{s} from the synthetic data. The
distances \~d(\~y\mathrm{o}\mathrm{b}\mathrm{s}, \~y) and d(y\mathrm{o}\mathrm{b}\mathrm{s}, y) are Euclidean distances normalized by the time horizon,
Tfi\mathrm{n}\mathrm{a}\mathrm{l}, and the threshold values are \~\epsilon = \epsilon = 50, common to both fidelities. Figure 1 shows,
for a subset of N\mathrm{s}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e} = 104 pairs of simulations, how the values of d vary with \~d (left) and
n (right). The left panel shows that the distances from the data of the high- and low-fidelity
simulations are correlated. The quadrants in the left panel also show the correlation between
w and \~w. We map the false positive and false negative simulations from the left to the right
panel, where the orange points show parameter samples where \~y \in \~\Omega (\~\epsilon ) but y /\in \Omega (\epsilon ), while
conversely the green points show parameter values where \~y /\in \~\Omega (\~\epsilon ) but y \in \Omega (\epsilon ).

50 100 150 200 250 300

d(y, yobs)

50

100

150

200

250

300
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y o
bs

)

Distance from data: multifidelity
Matching estimator values
False positive
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1 2 3 4
n

50

100

150

200

250
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y o
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Figure 1. Left: distances between observed data and low-fidelity (x-axis) and high-fidelity (y-axis) simula-
tions for N = 104 sample points generated from the uniform prior. Simulations of low- and high-fidelity models
are coupled by use of a common noise input (see subsection 6.1 for details). Quadrants correspond to the four
possible values of ( \~w,w) \in \{ 0, 1\} 2. Right: distances between observed data and high-fidelity simulations, plotted
against values of n for the same N = 104 sample points of (n,Kh) generated from the uniform prior.

5.3. Applying early accept/reject multifidelity ABC. We use the set of N = 5 \times 106

simulations as a benchmark dataset and assume that the values of the expectations and prob-
abilities in (4.4) are given by the empirical expectations and probabilities observed in this
dataset. These values can then be used to calculate the optimal continuation probabilities
(\^\eta 1, \^\eta 2) = (0.25, 0.12). In order to demonstrate the optimality of these continuation prob-
abilities, we will compare the efficiency of Algorithm 3.1 using the values of (\eta 1, \eta 2) shown
in Figure 2. We consider the following: early rejection, using \eta 1 = 1 and \=\eta 2 = 0.16; early
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Figure 2. Left: values of (\eta 1, \eta 2) used in comparison. Level sets of \phi (\eta 1, \eta 2) are depicted, corresponding to
(\eta 1, \eta 2) giving 99\%, 95\%, 90\%, 85\%, 80\%, 75\%, and 60\% of the maximum theoretical efficiency \phi (\^\eta 1, \^\eta 2). The
broken vertical and diagonal lines give the constrained spaces in which efficiency is maximized for early rejection
and early decision, respectively. Right: observed efficiencies ESS/T\mathrm{t}\mathrm{o}\mathrm{t} across 500 realizations of Algorithm 3.1
for each (\eta 1, \eta 2), ordered by theoretical efficiency \phi (\eta 1, \eta 2). Lighter colors correspond to the nonoptimized
(\^\eta \pm 

1 , \^\eta \pm 
2 ) pairs; darker colors correspond to rejection sampling and the three optimized values of (\eta 1, \eta 2).

Table 1
The observed probability (across 500 samples built using each (\eta 1, \eta 2)) that the efficiency of a realization

using (\eta 1, \eta 2) given by a row exceeds that using (\eta 1, \eta 2) given by a column. The values of (\eta 1, \eta 2) and the
distribution of efficiencies are depicted in Figure 2.

\BbbP (row exceeds column) Early decision  - / - Early rejection +/ - +/+  - /+ Rejection

Early accept/reject 0.67 0.77 0.99 0.90 1.00 1.00 1.00
Early decision 0.67 0.95 0.85 1.00 1.00 1.00

 - / - 0.71 0.70 1.00 1.00 1.00
Early rejection 0.58 1.00 1.00 1.00

+/ - 0.99 1.00 1.00
+/+ 0.94 1.00
 - /+ 0.99

decision, using \eta 1 = \eta 2 = 0.14; rejection sampling, using \eta 1 = \eta 2 = 1; and four additional
nonoptimized values (\eta \pm 1 , \eta 

\pm 
2 ), midway between (\^\eta 1, \^\eta 2) and each corner of (0, 1]2.

To create the distributions shown in Figure 2, we partitioned the benchmark dataset into
500 subsamples of size N\mathrm{s}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e} = 104. For each value of (\eta 1, \eta 2), we applied Algorithm 3.1
to each of the 500 subsamples and recorded the value of ESS/T\mathrm{t}\mathrm{o}\mathrm{t}.

1 Figure 2 supports the
optimality of (\^\eta 1, \^\eta 2) = (0.25, 0.12) for maximizing the efficiency of Algorithm 3.1. Table 1
quantifies the pairwise comparisons between all eight continuity probability pairs, in terms of
how many observed realizations have higher efficiency. While early decision and early rejec-
tion continuation probabilities do improve performance over rejection ABC, the theoretically
optimal continuation probabilities (\^\eta 1, \^\eta 2) give the highest efficiency across 500 realizations.

1Using (\eta 1, \eta 2) = (1, 1) in Algorithm 3.1 to give the rejection sampling baseline efficiency is slightly unfair:
Algorithm 2.1 is faster, because no low-fidelity simulations are generated. However, in subsection 6.1 we will
justify this using (\eta 1, \eta 2) = (1, 1) in Algorithm 3.1 as the rejection sampling baseline.D

ow
nl

oa
de

d 
01

/2
1/

20
 to

 1
29

.6
7.

18
6.

13
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

MULTIFIDELITY APPROXIMATE BAYESIAN COMPUTATION 127

For example, we observe that 99\% of realizations built using (\^\eta 1, \^\eta 2) (early accept/reject)
were more efficient than using early rejection alone. If we enable early acceptance but do not
treat the continuation probabilities separately (i.e., early decision), then we still observe that
95\% of such realizations are built more efficiently than using early rejection. However, 67\% of
samples built treating the early accept/reject continuation probabilities separately are built
more efficiently than using a single continuation probability for both.

In summary, we have shown that allowing early acceptance improves performance over
early rejection alone. Furthermore, this benefit is increased by treating early acceptance and
early rejection separately, by optimizing the continuation probabilities such that \eta 1 \not = \eta 2.

6. Implementation and performance optimization. In this section we discuss the practi-
cal issues involved in defining and optimizing the performance of Algorithm 3.1, and illustrate
them in the context of the example introduced in section 5.

6.1. Variance reduction by coupling. In Algorithm 3.1, for each \theta i \sim \pi (\cdot ), we first sim-
ulate \~y \sim \~p(\cdot | \theta ) from the low-fidelity model. If U < \eta (\~y), we then simulate y \sim p(\cdot | \theta )
from the high-fidelity model. In the simplest case, none of the information from the low-
fidelity simulation is used to simulate the high-fidelity model; however, this is not optimal.
Consider the specific multifidelity approach of early stopping; in this case, the low-fidelity
model replicates the high-fidelity model but only over [0, t] for the stopping time t < Tfi\mathrm{n}\mathrm{a}\mathrm{l}.
To generate y, rather than simulating the model afresh over [0, Tfi\mathrm{n}\mathrm{a}\mathrm{l}], we can instead restart
the simulation used to generate \~y from its state at t and generate the trajectory over (t, Tfi\mathrm{n}\mathrm{a}\mathrm{l}].
The high-fidelity model is thus simulated conditional on the low-fidelity simulation.

We can apply this concept to the more general multifidelity setting by simulating the high-
fidelity model conditional on the low-fidelity simulation. Consider a model, p(\cdot | \~y, \theta ), which
we will term a coupling between the high-fidelity and low-fidelity models, defined such that

(6.1)

\int 
p(\cdot | \~y, \theta )\~p(\~y | \theta ) d\~y = p(\cdot | \theta ).

Given a low-fidelity simulation, \~y \sim \~p(\cdot | \theta ), consider a simulation, y \sim p(\cdot | \~y, \theta ), from the
coupling, which we will term a coupled simulation. Then the preceding theory still holds,
since (6.1) implies that the coupled simulation is a simulation of the high-fidelity model, after
marginalizing out \~y.

One consequence of the coupled simulation being conditional on the low-fidelity simulation
is that y and \~y, and thus the estimators w and \~w, will (by a judicious choice of coupling)
be correlated. In the context of Algorithm 3.1 this, in turn, means that the false discovery
and false omission rates \BbbP (y /\in \Omega (\epsilon ) | \~y \in \~\Omega (\~\epsilon )) and \BbbP (y \in \Omega (\epsilon ) | \~y /\in \~\Omega (\~\epsilon )), respectively, can
be reduced. This subsequently reduces the variance of w\mathrm{m}\mathrm{f}(\theta ) as an estimator of the ABC
approximation to the likelihood. A second consequence is that the time c taken to simulate
y \sim p(\cdot | \~y, \theta ) from the coupling may be smaller than when simulating y \sim p(\cdot | \theta ) from the
uncoupled high-fidelity model. If the reuse of information from \~y means that the high-fidelity
simulation time is smaller, then the optimal rate of early acceptance/rejection is lower.2

2Using (\eta 1, \eta 2) = (1, 1) in Algorithm 3.1 as the baseline rejection sampler performance can be justified when
the time c to simulate y \sim p(\cdot | \theta ) from the high-fidelity model is equal to the time taken to simulate both \~y
from the low-fidelity model and the coupled simulation y \sim p(\cdot | \~y, \theta ).
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The key problem in this approach is how to define the coupling, p(\cdot | \~y, \theta ). The appropriate
choice of coupling is usually specific to the details of the low- and high-fidelity models [11, 19,
23, 33]. The results presented in sections 5 and 7 are based on a coupling between low- and
high-fidelity models using a common noise input, as described in section SM3.

6.2. Parameter estimation. Recall that the output of Algorithm 3.1 is a set of weights
and parameter pairs \{ wi, \theta i\} that are used in the estimator

\BbbE \mathrm{A}\mathrm{B}\mathrm{C}(F (\theta )) \approx 1

N

\sum 
i

wiF (\theta i)

\bigg/ 
1

N

\sum 
j

wj = \mu \mathrm{A}\mathrm{B}\mathrm{C}(F ).

Section 4 considered the value of the continuation probabilities to optimize the efficiency
ESS/T\mathrm{t}\mathrm{o}\mathrm{t}. However, the ESS is independent of the function F being estimated by the sample.
We can instead measure the performance of Algorithm 3.1 by trading off the variance of the
Monte Carlo estimate \mu \mathrm{A}\mathrm{B}\mathrm{C}(F ) against simulation time, a performance metric that is closer
to that typically used in multilevel estimation algorithms [10].

Lemma 6.1. The variance of \mu \mathrm{A}\mathrm{B}\mathrm{C} can be expressed in terms of the weights w\mathrm{m}\mathrm{f}(\theta i) as
approximately equal to

\BbbV (\mu \mathrm{A}\mathrm{B}\mathrm{C} (F )) \approx 1

NZ2
\BbbV 
\bigl( 
w\mathrm{m}\mathrm{f}

\bigl( 
F  - \=F

\bigr) \bigr) 
=

1

N

\BbbE 
\Bigl( 
w2
\mathrm{m}\mathrm{f}

\bigl( 
F  - \=F

\bigr) 2\Bigr) 
\BbbE (w\mathrm{m}\mathrm{f})

2 ,

where \=F = \BbbE \mathrm{A}\mathrm{B}\mathrm{C}(F | y\mathrm{o}\mathrm{b}\mathrm{s}) is the ABC posterior expectation of F estimated by \mu \mathrm{A}\mathrm{B}\mathrm{C}(F ).

Proof. This expression is derived in the supplementary material, section SM1.

Corollary 6.2. In the limit as N \rightarrow \infty , the product \BbbV (\mu \mathrm{A}\mathrm{B}\mathrm{C} (F ))T\mathrm{t}\mathrm{o}\mathrm{t} of the estimator
variance and the total simulation time can be approximated by

(6.2) \BbbV (\mu \mathrm{A}\mathrm{B}\mathrm{C} (F ))T\mathrm{t}\mathrm{o}\mathrm{t} \approx 
\BbbE 
\Bigl( 
w2
\mathrm{m}\mathrm{f}

\bigl( 
F  - \=F

\bigr) 2\Bigr) \BbbE (T )

\BbbE (w\mathrm{m}\mathrm{f})
2 =

\phi (\eta 1, \eta 2;F )

\BbbE (w\mathrm{m}\mathrm{f})
2

for the random time T taken to generate w\mathrm{m}\mathrm{f}(\theta ).

Note that the reciprocal of this approximation has a form similar to that of the limiting
value of ESS/T\mathrm{t}\mathrm{o}\mathrm{t} and can therefore be thought of as an estimator-specific efficiency. As
\BbbE (w\mathrm{m}\mathrm{f})

2 is independent of (\eta 1, \eta 2), the optimal trade-off is where \phi (\eta 1, \eta 2;F ) is minimized.
The expected computation time, \BbbE (T ), is given in section 4. However, the factor corre-

sponding to the second moment is now F -dependent, such that

\BbbE 
\Bigl( 
w2
\mathrm{m}\mathrm{f}

\bigl( 
F  - \=F

\bigr) 2\Bigr) 
=

\int \bigl( 
F (\theta ) - \=F

\bigr) 2 \BbbE \bigl( w2
\mathrm{m}\mathrm{f} | \theta 

\bigr) 
\pi (\theta ) d\theta 

=
\bigl( 
ptp(F ) - pfp(F )

\bigr) 
+

1

\eta 1
pfp(F ) +

1

\eta 2
pfn(F ),
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where

ptp(F ) =

\int 
\BbbP 
\Bigl( \Bigl\{ 

\~y \in \~\Omega (\~\epsilon )
\Bigr\} 
\cap \{ y \in \Omega (\epsilon )\} | \theta 

\Bigr) 
(F (\theta ) - \=F )2\pi (\theta ) d\theta ,(6.3a)

pfp(F ) =

\int 
\BbbP 
\Bigl( \Bigl\{ 

\~y \in \~\Omega (\~\epsilon )
\Bigr\} 
\cap \{ y /\in \Omega (\epsilon )\} | \theta 

\Bigr) 
(F (\theta ) - \=F )2\pi (\theta ) d\theta ,(6.3b)

pfn(F ) =

\int 
\BbbP 
\Bigl( \Bigl\{ 

\~y /\in \~\Omega (\~\epsilon )
\Bigr\} 
\cap \{ y \in \Omega (\epsilon )\} | \theta 

\Bigr) 
(F (\theta ) - \=F )2\pi (\theta ) d\theta .(6.3c)

In these coefficients, values of \theta generating false positives and false negatives are now penalized
based on how much they contribute to the variance. The optimal continuation probabilities
(\^\eta 1, \^\eta 2) specific to a given estimator \mu \mathrm{A}\mathrm{B}\mathrm{C}(F ) \approx \BbbE \mathrm{A}\mathrm{B}\mathrm{C}(F (\theta )) = \=F can now be found by replac-
ing ptp, pfp, pfn in Lemmas 4.2 and 4.3 and Corollary 4.4 with the respective F -dependent
parameters in (6.3).

To illustrate the impact of this alternative performance metric on the continuation prob-
abilities, we return to the repressilator example of section 5. We consider three functions
of the uncertain parameter n to estimate the following: F1(n) = \BbbI (n \in (1.9, 2.1)); F2(n) =
\BbbI (n \in (1.2, 1.4)); and F3(n) = n. The optimal pairs (\^\eta 1, \^\eta 2)i for each function are (\^\eta 1, \^\eta 2)1 =
(0.44, 0.28), (\^\eta 1, \^\eta 2)2 = (0.23, 0.06), and (\^\eta 1, \^\eta 2)3 = (0.38, 0.20). These clearly deviate, to
different degrees, from the optimal continuation probabilities for maximizing ESS/T\mathrm{t}\mathrm{o}\mathrm{t} of
(\^\eta 1, \^\eta 2) = (0.25, 0.12). Importantly, although the computational time saved by early rejec-
tion or acceptance does not change, the contribution of false positives and false negatives to
increasing the variance is different enough to change the optimal continuation probabilities.

To demonstrate the efficiency of each pair of continuation probabilities, we partition the
benchmark data into 5000 subsamples of size 1000 and run Algorithm 3.1 on each. Fur-
thermore, we stop Algorithm 3.1 early once the total simulation time reaches 30 seconds;
in this example, every subsample is of size less than 1000. For each subsample we estimate
\mu (Fi); Table 2 then records the variance across the resulting 5000 estimates. By fixing the
computational cost for every subsample, the variances in the estimator \mu \mathrm{A}\mathrm{B}\mathrm{C}(Fi) across 5000
subsamples for each value of (\eta 1, \eta 2) can be directly compared. Using any (\eta 1, \eta 2) \not = (1, 1)
seems to outperform rejection sampling, but the early accept/reject continuation probabili-
ties are the best performing. By also showing the values of \phi (\eta 1, \eta 2;Fi), we can see that the
observed sample variances remain approximately proportional to this objective function. The
percentage values in Table 2 show that the expected benefits of optimizing \phi (\eta 1, \eta 2;F ) over
(\eta 1, \eta 2) \in (0, 1]2 may be marginal, depending on the function, F , being estimated. Further-
more, using (\eta 1, \eta 2) = (0.25, 0.12) chosen to optimize ESS clearly does not produce the lowest
variances across all functions Fi.

6.3. Estimating optimal continuation probabilities. The values of (\^\eta 1, \^\eta 2) depend on
the values given in (4.4) and (6.3), which are based on the times taken to generate \~y and
y, together with the ROC values of \~w as an approximation of w. Thus, in the absence of
any initial information about computation times and ROC values, the optimal continuation
probabilities cannot be known in advance. Before applying Algorithm 3.1 we therefore need
a burn-in period to enable reasonable estimates of the values in (4.4) and (6.3).

Suppose that, at iteration m of Algorithm 3.1, both \~yi and yi have been generated for
k of the m sampled parameter values, \theta . The other m  - k values of \theta have only generated
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Table 2
Continuation probabilities, objective function values (multiplied by 103), and the sample variance (multiplied

by 103) of 5000 estimates of \mu \mathrm{A}\mathrm{B}\mathrm{C}(Fi), i = 1, 2, 3, each built with Algorithm 3.1 for a fixed simulation budget
of 30 seconds. Optimal ESS refers to (\eta 1, \eta 2) chosen to minimize ESS, independently of F . Percentages are
reductions relative to rejection sampling (first column).

\times 10 - 3 Rejection Early rejection Early decision Early accept/reject Optimal ESS

F1 = \BbbI (n \in (1.9, 2.1))

(\eta 1, \eta 2) (1, 1) (1, 0.35) (0.30, 0.30) (0.44, 0.28) (0.25, 0.12)
\phi (\eta 1, \eta 2; F1) 6.14 4.68 (24\%) 4.50 (27\%) 4.41 (28\%) 5.09 (17\%)

Sample variance 4.17 3.16 (24\%) 3.04 (27\%) 2.85 (32\%) 3.26 (22\%)

F2 = \BbbI (n \in (1.2, 2.4))

(\eta 1, \eta 2) (1, 1) (1, 0.08) (0.10, 0.10) (0.23, 0.06) (0.25, 0.12)
\phi (\eta 1, \eta 2; F2) 8.14 3.16 (61\%) 2.85 (65\%) 2.53 (69\%) 2.70 (67\%)

Sample variance 5.63 2.03 (64\%) 1.97 (65\%) 1.69 (70\%) 1.82 (68\%)

F3 = n

(\eta 1, \eta 2) (1, 1) (1, 0.25) (0.23, 0.23) (0.38, 0.20) (0.25, 0.12)
\phi (\eta 1, \eta 2; F3) 4.08 2.64 (35\%) 2.51 (38\%) 2.41 (41\%) 2.55 (38\%)

Sample variance 2.82 1.72 (39\%) 1.68 (40\%) 1.59 (44\%) 1.66 (41\%)

\~y and have been accepted or rejected early. We denote the index sets Im = \{ 1, . . . ,m\} 
and Ik = \{ i \in Im s.t. both \~yi, yi generated\} and write \rho m =

\sum 
Im

\BbbI (\~yi \in \~\Omega (\~\epsilon ))/m and \rho k =\sum 
Ik
\BbbI (\~yi \in \~\Omega (\~\epsilon ))/k. Natural estimates of the computation times are

\BbbE (\~c) \approx 1

m

\sum 
i\in Im

\~c(\theta i),(6.4a)

\=cp =
\rho m
\rho k

\cdot 1
k

\sum 
i\in Ik

c(\theta i)\BbbI (\~yi \in \~\Omega (\~\epsilon )),(6.4b)

\=cn =
1 - \rho m
1 - \rho k

\cdot 1
k

\sum 
i\in Ik

c(\theta i)\BbbI (\~yi /\in \~\Omega (\~\epsilon )).(6.4c)

The remainder of the values in (4.4) are similarly estimated by

\=ptp =
\rho m
\rho k

\cdot 1
k

\sum 
i\in Ik

\BbbI (yi \in \Omega (\epsilon ))\BbbI (\~yi \in \~\Omega (\~\epsilon )),(6.5a)

\=pfp =
\rho m
\rho k

\cdot 1
k

\sum 
i\in Ik

\BbbI (yi /\in \Omega (\epsilon ))\BbbI (\~yi \in \~\Omega (\~\epsilon )),(6.5b)

\=pfn =
1 - \rho m
1 - \rho k

\cdot 1
k

\sum 
i\in Ik

\BbbI (yi \in \Omega (\epsilon ))\BbbI (\~yi /\in \~\Omega (\~\epsilon )),(6.5c)

while the F -dependent integrals in (6.3) are estimated through

\=ptp(F ) =
\rho m
\rho k

\cdot 1
k

\sum 
i\in Ik

(F (\theta i) - \=\mu )2\BbbI (yi \in \Omega (\epsilon ))\BbbI (\~yi \in \~\Omega (\~\epsilon )),(6.6a)

\=pfp(F ) =
\rho m
\rho k

\cdot 1
k

\sum 
i\in Ik

(F (\theta i) - \=\mu )2\BbbI (yi /\in \Omega (\epsilon ))\BbbI (\~yi \in \~\Omega (\~\epsilon )),(6.6b)
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Algorithm 6.1. Adaptive early accept/reject multifidelity ABC.

Input: observations data y\mathrm{o}\mathrm{b}\mathrm{s} and \~y\mathrm{o}\mathrm{b}\mathrm{s} from a common experiment; prior \pi (\cdot ); function
F (\theta ); low- and high-fidelity models \~p(\cdot | \theta ) and p(\cdot | \theta ); distance functions \~d(\cdot , \~y\mathrm{o}\mathrm{b}\mathrm{s}) and
d(\cdot , y\mathrm{o}\mathrm{b}\mathrm{s}); thresholds \~\epsilon and \epsilon ; lower bounds \eta 1,0 and \eta 2,0; Monte Carlo sample size N ; burn-in
length M < N .

Initialize (\eta 1, \eta 2) = (1, 1) and set Im = Ik = \emptyset .
for i = 1, . . . , N do
Generate \theta i \sim \pi (\cdot ) and U \sim Unif(0, 1).
Generate \~yi \sim \~p(\cdot | \theta i) from the low-fidelity model.
Calculate \~w = \BbbI ( \~d(\~yi, \~y\mathrm{o}\mathrm{b}\mathrm{s}) < \~\epsilon ).
Set wi = \~w.
Set \eta = \eta 1 \~w + \eta 2(1 - \~w).
if U < \eta then
Generate yi \sim p(\cdot | \theta i) from the high-fidelity model.
Calculate w = \BbbI (d(yi, y\mathrm{o}\mathrm{b}\mathrm{s}) < \epsilon ).
Update wi = wi + (w  - wi)/\eta .
Update Ik = Ik \cup \{ i\} .

end if
Update In = In \cup \{ i\} .
Set n = | In| and k = | Ik| .
if k \geq M then
Recalculate values in (6.4)--(6.6).
Estimate optimal \^\eta 1 and \^\eta 2 according to Lemmas 4.2 and 4.3 and Corollary 4.4.
Update \eta 1 = \^\eta 1 and \eta 2 = \^\eta 2.
Update \eta 1 = max(\eta 1, \eta 1,0) and \eta 2 = max(\eta 2, \eta 2,0).

end if
end for
Calculate \mu \mathrm{A}\mathrm{B}\mathrm{C} =

\sum N
i=1wiF (\theta i)/

\sum N
i=1wi.

return \mu \mathrm{A}\mathrm{B}\mathrm{C}

\=pfn(F ) =
1 - \rho m
1 - \rho k

\cdot 1
k

\sum 
i\in Ik

(F (\theta i) - \=\mu )2\BbbI (yi \in \Omega (\epsilon ))\BbbI (\~yi /\in \Omega (\epsilon )),(6.6c)

where \=\mu =
\sum 

i\in Im F (\theta i)wi/
\sum 

j\in Im wj . In practical implementations of Algorithm 3.1, we
propose beginning with a burn-in run by using (\eta 1, \eta 2) = (1, 1) for a suitably large number
M < N of sample points \theta i. We can then estimate optimal continuation probabilities (\^\eta 1, \^\eta 2)
using the estimates given in (6.4)--(6.6) to use for subsequent iterations, i = M + 1, . . . , N .
Note that the values in (6.4)--(6.6) will continue to evolve over i > M . We can therefore adapt
the continuation probabilities (\eta 1, \eta 2) used for subsequent iterations. Algorithm 6.1 combines
a burn-in period of length M with an adaptation of continuation probabilities (\eta 1, \eta 2) toward
an evolving estimate of the optimum, subject to lower bounds \eta 1,0 and \eta 2,0.

This algorithm is no longer ``embarrassingly"" parallel, although many copies of the for
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loop could run independently to produce a sample, potentially exchanging information on an
optimal (\eta 1, \eta 2). It also requires a priori fixed \epsilon and \~\epsilon for the optimal continuation probabilities
to be well-defined, and therefore cannot target a particular acceptance rate. More importantly,
there are no longer guarantees of the consistency of the resulting estimate, although the
example in the following section shows good performance. To guarantee consistency, the
adaptive phase may be followed by running Algorithm 3.1 with fixed continuation probabilities
equal to (\eta 1, \eta 2) found by the end of the adaptive phase.

7. Example: Viral kinetics. We conclude with a further example using a model of intra-
cellular viral kinetics [15, 31].

7.1. Model. A cell is initially infected with a single viral template. Templates hijack
cellular processes to produce new viral genomes and structural protein, which combine to
produce new viral vectors that are expelled from the cell. Alternatively, viral genomes can
become new templates, and templates and structural protein can also decay. We denote the
counts of each molecule at time t by the vector

(template(t), genome(t), struct(t), virus(t)) = (x1(t), x2(t), x3(t), x4(t)).

The six reactions are

template
k1 - \rightarrow template + genome,(7.1a)

genome
k2 - \rightarrow template,(7.1b)

template
k3 - \rightarrow template + struct,(7.1c)

template
k4 - \rightarrow \emptyset ,(7.1d)

struct
k5 - \rightarrow \emptyset ,(7.1e)

genome + struct
k6 - \rightarrow virus.(7.1f)

We use initial conditions x(0) = (1, 0, 0, 0) and time horizon [0, Tfi\mathrm{n}\mathrm{a}\mathrm{l}] = [0, 200]. One impor-
tant characteristic of this system is that cells can randomly recover from small-scale infection,
whenever the template decays before enough genome is produced to set off the positive feed-
back loop leading to viral infection. Even if not recovered, cells can stay latently infected for
a randomly long period of time before virus(t) > 0.

7.2. Data generation. The goal of parameter identification will be to identify the reaction
rates ki, i = 1, . . . , 6, in (7.1). We first generate synthetic data y\mathrm{o}\mathrm{b}\mathrm{s} using the exact Gillespie
SSA [12] with nominal parameters (1, 0.025, 100, 0.25, 1.9985, 7.5 \times 10 - 5). Ten independent
simulations are produced, each corresponding to a cell in a population of size ten with a
common, randomly selected parameter set. The prior distribution on each uncertain parameter
ki is log-uniform around its nominal value; that is, we multiply the nominal value of ki by
1.5ui for ui \in U( - 1, 1). The initial conditions are fixed at a single viral template, x1(0) = 1.

The low-fidelity model is an adaptation of that given in [15]. For the parameter ranges
considered in this example, the propensities of the reactions in (7.1c) and (7.1e) are extremely
large relative to those of the other reactions in (7.1). Low-fidelity model simulations are
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therefore generated using a hybrid stochastic/deterministic algorithm [15] that avoids the
computational bottleneck arising from excessive firings of the fast reactions. We approximate
these reactions by considering only their net effect on the mean molecule count, ignoring the
fast stochastic fluctuations around the slowly evolving mean. In this example, we simulate the
high-fidelity model conditional on the simulation of the low-fidelity model using a coupling,
p(\cdot | \~y, \theta ), that shares the random noise input between the two simulations. For more details
on the coupling approach, see the supplementary material, section SM3.

For M = 105 sample parameters generated from the prior distribution for (k1, . . . , k6), we
produced ten simulations from the low-fidelity model with ten coupled simulations from the
high-fidelity model, corresponding to populations of size-ten cells for each parameter vector.
The summary statistics are defined as follows. First, a cell is considered infected if it has output
a nontrivial number of virus replicates over the 200-day horizon, such that x4(200) > 3. Each
population thus has a number of infected cells: the three-dimensional summary statistics y
and \~y are (i) the infected percentage of the population, (ii) log2 of the average viral output of
each infected cell by t = 200, and (iii) the average percentage along the time horizon that an
infected cell first exceeds the detection threshold of 3. If there are zero infected cells, we use
the zero vector. The distances \~d(\cdot , \~y\mathrm{o}\mathrm{b}\mathrm{s}) and d(\cdot , y\mathrm{o}\mathrm{b}\mathrm{s}) are both the Euclidean distance between
summary statistics, shown in Figure 3 for N = 104 pairs of simulations.

Note that, in comparison to the repressilator example (Figure 1), the distances in this
case are much more closely correlated. However, the relative speed-up in simulation times is
not significantly different: the average cost of a low-fidelity simulation is 17.0\% of an average
high-fidelity simulation in the repressilator example, compared to 17.4\% in this example. The
improved accuracy in Figure 3 suggests that the optimal continuation probabilities (\^\eta 1, \^\eta 2)
should be smaller, as fewer corrections will be needed.

0 2 4 6 8

d(y, yobs)

0

2

4

6

8

d(
y,

y o
bs

)

Distance from data: multifidelity
Matching estimator values
False positive
False negative

0.25

0.25

Figure 3. Distances between observed data and low-fidelity (x-axis) and coupled high-fidelity (y-axis) simu-
lations for M = 104 sample points generated from the six-dimensional log-uniform prior. Quadrants correspond
to the four possible values of ( \~w,w) \in \{ 0, 1\} 2. Inset: region where \~d and d are close to \~\epsilon = \epsilon = 0.25.
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7.3. Applying early accept/reject multifidelity ABC. We return to measuring a sample's
quality by ESS/T\mathrm{t}\mathrm{o}\mathrm{t}. Taking the full set of 10

5 pairs of simulations implies optimal continuation
probabilities of (\^\eta 1, \^\eta 2) = (0.161, 0.048). We produced 100 independent runs of the adaptive
phase of Algorithm 6.1, using this full set as the burn-in set each time; thus, the adaptive
(\eta 1, \eta 2) values began at (0.161, 0.048). The leftmost plot in Figure 4 shows the observed
distribution of the efficiencies of the 100 samples built during the adaptive phase. This is
clearly multimodal; some samples are built much less efficiently than others.

This is a consequence of (\^\eta 1, \^\eta 2) being the optimal continuation probabilities only in the
asymptotic limit. Due to the accuracy of the low-fidelity model, shown in Figure 3, observed
misclassifications w(\theta i) \not = \~w(\theta i) are relatively rare events within a finite sample. When these
rare events do happen, they lead to a much smaller ESS. For example, assuming that the
continuation probabilities stay approximately equal to (\^\eta 1, \^\eta 2), then w\mathrm{m}\mathrm{f} =  - 5.22 for a false
positive and w\mathrm{m}\mathrm{f} = 20.82 for a false negative. Each realization used to construct the leftmost
plot in Figure 4 thus effectively contains a Poisson number of weights w\mathrm{m}\mathrm{f}(\theta i) \in \{  - 5.22, 20.82\} ,
each of which significantly decreases the ESS, inducing a multimodal distribution for efficiency.
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After small burn-in
During burn-in

Figure 4. The efficiency distribution of 100 samples built using Algorithm 6.1. ``After large/small burn-
in"" depicts the efficiencies of the part of the samples built during the adaptive phase, with a starting value of
(\eta 1, \eta 2) derived using a common burn-in sample of size 105 (large) or 100 independent burn-in samples of size
103 (small). ``During burn-in"" depicts the distribution of the efficiency for each of the 100 small burn-in phases.

Recall that the objective functions \phi (\eta 1, \eta 2) and \phi (\eta 1, \eta 2;F ) are the products of the lim-
iting values of the second moment and computation time as the sample size, N , approaches
infinity. This example demonstrates that when the false discovery rate and false omission rate,
and hence the continuation probabilities, are particularly small, the effect of finite N becomes
more important. We hypothesize that the sample size N can be considered large enough for
an accurate estimate of pfp, etc. (and hence of the optimal continuation probabilities) only
when the number of weights w\mathrm{m}\mathrm{f}(\theta i) /\in \{ 0, 1\} is suitably large. Future work could potentially
aim to further optimize the continuation probabilities by taking into account a fixed N or
computational budget

\sum 
i Ti < B more explicitly.
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7.4. Shorter burn-in estimates. The burn-in set of 105 pairs of simulations took 132
hours of computation time. We created a further 100 independent samples using the adaptive
phase of Algorithm 6.1, but this time also partitioned the burn-in set into 100 independent
subsamples of size M = 103. The center and right plots in Figure 4 show the distributions of
efficiency across the 100 samples using this shorter burn-in phase during the adaptive phase
(red) and initial burn-in (green). Clearly, the portions of each sample built during the burn-in
phase are built much less efficiently, on average, than the portions of the samples built during
the adaptive phase. However, the small burn-in duration leads to an even more pronounced
multimodal efficiency distribution during the adaptive phase, and the effective sample size of
some samples has collapsed due to large-magnitude weights.

To observe how far the weights are from the optimum, Figure 5 shows the variability in the
continuation probabilities used when applying Algorithm 6.1. The values of (\eta 1, \eta 2) used at
the beginning of the adaptive phase are shown in blue, and in orange are the resulting values
at the end of the adaptive phase. A point lies at each of the fixed lower boundaries \eta 1 = 0.01
or \eta 2 = 0.01 if no false positive or no false negative has been observed, respectively. The
continuation probabilities may lie on a lower boundary at the start of the adaptive phase, but
during the adaptive phase a false positive or false negative may be observed. The resulting
sample will then include a weight of 100 or  - 99; these are the samples of extremely low
efficiency shown in the red plot in Figure 4, as the effective sample size will be significantly
decreased. However, the continuation probabilities that lie on a lower boundary at the end of
the adaptive phase (i.e., the orange points) are those where no false positive or false negative
has been observed during either the burn-in or the adaptive phase. These are the samples with
extremely high efficiency in the red plot in Figure 4. Similarly to the case of a long burn-in
phase, future development of the adaptive approach should focus on identifying corrections
to (\eta 1, \eta 2) to account for these finite sample size effects.

0.0 0.1 0.2 0.3 0.4
1

0.00

0.05

0.10

0.15

0.20

2

Continuation Probabilities and Efficiency

After burn-in
After adaptation
Benchmark

Figure 5. Cloud of near-optimal estimates of (\^\eta 1, \^\eta 2) output by Algorithm 6.1. The black point is the ``true""
value of (\^\eta 1, \^\eta 2) estimated using the entire benchmark dataset. Contours are level sets corresponding to 99\%,
95\%, 90\%, 85\%, 80\%, 75\%, and 60\% of the theoretical maximum efficiency achieved at (\^\eta 1, \^\eta 2).
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8. Discussion and conclusions. In this work, we have considered the use of multifidelity
methods to improve the efficiency of constructing ABC estimators by optimally combining
high- and low-fidelity models. We combined the strengths of early rejection and early decision
approaches to construct a multifidelity method with both early acceptance and early rejection
of parameter samples, which treats the choice of whether to simulate the high-fidelity model
differently, depending on the output of the low-fidelity simulation. One consequence of this
is that parameter samples for which the high-fidelity model is simulated are not distributed
across the parameter space according to the prior, \pi . The early accept/reject method can thus
be interpreted as an importance sampling approach, with an importance distribution induced
by the low-fidelity model.

The samples built in Algorithms 3.1 and 6.1 will contain negative weights whenever
\~y \in \~\Omega (\~\epsilon ) and y /\in \Omega (\epsilon ). These negative weights mean that the resulting set of weights
and parameters \{ wi, \theta i\} cannot be treated as a weighted sample from the ABC posterior. As
a result, Algorithm 3.1 with \eta 1 < 1 cannot currently be adapted to methods reliant on resam-
pling, such as SMC-ABC [20, 29, 32], or to the rejection approach of discarding the proposal
used in MCMC-ABC [34]. An SMC approach would allow the acceptance thresholds \epsilon and \~\epsilon 
to be selected adaptively rather than be fixed a priori, and for the continuation probabilities to
adapt with them. In future work we will combine the multifidelity approach with ABC-SMC
by investigating how to sample from a weighted kernel density estimate with positive and
negative weights.

Up to now, we have considered only a single low-fidelity model. There are often situa-
tions where there are multiple competing low-fidelity models, the accuracy and computational
savings of which vary across parameter space. The low-fidelity models therefore do not nec-
essarily form a hierarchy of progressively increasing accuracy or cost that is valid across all
of parameter space, although such hierarchies may exist locally [24]. For example, both the
accuracy and relative speed-up of the approximation in section 7 will vary with parameters
k3 and k5. One strength of the multifidelity method proposed here is that the requirement for
high-fidelity simulations varies across parameter and simulation space, without any analytical
input. Hence, we expect that adapting the approach described in this work to situations with
multiple low-fidelity models should focus computational effort toward models that give the
greatest benefits, potentially uncovering local hierarchies in model fidelity in the process.

The continuation probability \eta (\~y) was chosen in (3.4) to depend on the value of \BbbI (\~y \in 
\~\Omega (\~\epsilon )) in order to implement early acceptance and early rejection with constant probabilities.
However, there is no reason to constrain \eta (\~y) to this form. Further work in this area could also
explore the potential of generalizations, such as \eta (\~y) =

\sum R
r=1 \eta r\BbbI (\~y \in \Omega r), for any partition

\Omega r of the output space of the low-fidelity model, \~p(\cdot | \theta ). For example, we could consider
\Omega r = \{ \~d(\~y, \~y\mathrm{o}\mathrm{b}\mathrm{s}) \in (\~\epsilon r, \~\epsilon r - 1)\} for a decreasing sequence of thresholds \{ \~\epsilon r\} . Another option
would be to also include explicit \theta dependence into the continuation probability \eta (\~y, \theta ) to
reflect, for example, the effect of \theta on the times taken to simulate \~y \sim \~p(\cdot | \theta ) and y \sim p(\cdot | \theta ),
or knowledge about F (\theta ).

Subsection 6.3 discusses one way of dealing with the lack of a priori knowledge on the
ROC analysis of the cheap rejection sampler \~w = \BbbI (\~y \in \~\Omega (\~\epsilon )) as an approximation to the
expensive rejection sampler w = \BbbI (y \in \Omega (\epsilon )) and hence of the optimal continuation prob-
abilities. However, different application areas may provide low-fidelity models with known
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error bounds relative to the high-fidelity models, such as standard results on balanced trun-
cation [14], for example. It may be possible to use these bounds to reduce uncertainty in the
ROC values more efficiently than in Algorithm 6.1. This approach is likely to be much more
application-driven, as much error estimation theory for model reduction is based on specific
model reductions and specific model outputs and summary statistics [3, 26].
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