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Designing Conservation Relations in Layered
Synthetic Biomolecular Networks

Thomas P. Prescott and Antonis Papachristodoulou

Abstract—In Synthetic Biology, biomolecular networks are
designed and constructed to perform specified tasks. Design strate-
gies for these networks tend to center on tuning the parameters
of mathematical models to achieve a specified behavior, and im-
plementing these parameters experimentally. This design strategy
often assumes a fixed network structure that defines the possible
behaviors, which may be too restrictive for our purposes. This
paper investigates the extent to which the state space of a synthetic
network can also be designed and shaped by parametric tuning.
We exploit timescale separation to implement new, nonlinear,
tunable conservation relations that hold for all times beyond a fast
transient. We demonstrate an application of this design strategy
by flexibly constraining the possible behaviors of a gene regulatory
network through the design of fast protein interactions.
Index Terms—Conservation relations, layers, singular perturba-

tion, synthetic biology.

I. INTRODUCTION

S YNTHETIC Biology is a rapidly-developing field con-
cerned with the de novo design or redesign of biomolecular

circuits to specification. Fundamental current research centers
on finding design principles for this task, which will speed
the field’s transition into a rigorous, standardized engineering
discipline [1], [2].
Designing biomolecular networks requires extensive math-

ematical modelling, often identifying parameters that must be
tuned to provide functionality that is robust to uncertainty and
stochasticity. Tuned parameters may be implemented experi-
mentally in synthetic networks bymodulating specific biochem-
ical properties [3]. There aremany such ‘dials’ that can be tuned,
at global level [4], [5], transcription level [6]–[8], or translation
level [9], [10]. In particular, this article will consider systems
tuned at a post-translational level [11], [12]. These ‘dials’ must
be tuned subject to the uncertainty and stochasticity underlying
the experimental realization of a mathematical model [13].
The parametric design process assumes that the network

structure is chosen a priori, implying a set of given conserva-
tion relationships. A more ambitious design procedure would
attempt to shape the conservation relationships themselves. The
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question addressed in this paper is to determine when this can
be done by designing the network’s parameters. The ability to
specify tunable nonlinear conservation relations will decouple
the design of the allowed state values from the design of the
system’s dynamics.
The design strategy taken in this paper will impose timescale

separation, which is characteristic of many evolved biomolec-
ular networks [14] and has been widely applied to their analysis
[15]–[21]. The principle of model reduction is that a systemwith
a state in a high-dimensional space can be approximated by an-
other system that evolves in a space of smaller dimension. A key
feature of our previous work [21] is that this space is easily em-
bedded in the original coordinates corresponding to biomolec-
ular concentrations.
Various recent results apply timescale separation to the design

of synthetic biocircuits. For example, to reduce the retroactivity
[22] arising from composing multiple synthetic biomolecular
gene transcription modules together, fast reactions were used
in [23], [24] to enforce a desired signal direction. Conversely,
a metabolic network can be steered to a given steady state by a
slower genetic regulatory network (GRN) [25], or can be opti-
mized for an arbitrary GRN [26].
Our approach is to constrain the state space of a synthetic

biomolecular system with nonlinear conservation relations, im-
plemented by designing a layer [27], [28] of additional fast re-
actions between the same species. In Section II, we outline the
ODE model reduction technique used in Section III to identify
the nonlinear conservation relations that can be shaped by the
fast layer’s design. Section IV applies this strategy to GRNs by
designing protein interaction network (PIN) layers to implement
particular nonlinear conservation relations. Finally, Section V
discusses some practical aspects of the experimental implemen-
tation of layered design in Synthetic Biology, such as the effect
of stochasticity on model reduction [29], [30] and the possible
means of tuning post-translational biochemical parameters [11].

II. PRELIMINARIES

In this paper we consider dynamic ODE models of biomolec-
ular reaction networks comprised of biochemical species ,
for , and reactions , for [31].
Define the vector of scalar variables

that represent the concentration of at time . Define
also the vector of reac-
tion rates , which depend on the species concentrations
. The dynamics of are

(1)
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for a specified initial condition vector . Here, is the sto-
ichiometry matrix of the network, mapping the reaction rates

to the rate of change of the concentrations .
A vector or matrix transpose is denoted with superscript .

For any given matrix we write respectively

for the kernel, left null space, column space, and row space.
Given the initial conditions of (1), the state
lies in a stoichiometric compatibility class [32], such that

where is the dimension of . Furthermore,
each for all , as it represents a biochemical
concentration.
Another interpretation of the stoichiometric compatibility

class arises by considering the left null space . For any

independently of the flux vector . Hence for all the
trajectory of evolves such that is orthogonal to all

. In particular, is orthogonal to each element of
any set of independent defining a basis for .
Each equation defines a linear conservation relation

for all , resulting in
independent linear conservation relations.
The spaces and defining the network’s state

space and conservation relations are independent of the reac-
tion rates , and in particular of the model parameters. This
paper will investigate to what extent the state space and con-
servation relations can be shaped by these parameters. Further-
more, the conservation relations are all linear.
Can nonlinear constraints also be implemented? We will ad-
dress these issues in Section III by applying previous results
[21] on timescale-separated layers to identify the relationship
between fast dynamics and conservation relations.
Consider a biomolecular reaction network with reactions

proceeding at rates that separate in scale [15], [17], [21], [27].
For example, consider the model of the operator region
of phage with gene in [33]. The transcribed repressor is
assumed to reversibly dimerize and bind to the promoters on a
timescale on the order of seconds, compared to timescales of
minutes for transcription and translation processes.
In general, the set of reactions can be partitioned into dis-

joint subsets and of slow and fast reactions re-
spectively. Then timescale separation can be parameterized by

such that (1) can be rewritten

(2)

where, with no loss of generality, the indices of the columns of
and elements of are partitioned conformally with and

. The values in and are on the same scale, since the
scale separation is captured by .
Typically, model reduction by singular perturbation requires

the classification of variables as fast or slow. In (2) this cannot
be done; each species may take part in both slow and fast re-
actions. It was observed in [34] that combinations of apparently
fast variables may exhibit slow dynamics. In this case, estab-
lished approaches transform the state space into standard form
to define timescale-separated variables [35]. However, in our
previous work [21], [27], [28] we instead used layered decom-
position to show the following result.
Definition 1: Given the timescale-separated system (2), the

isolated fast and slow layers’ states and have dynamics

(3)
(4)

and initial conditions .
Theorem 2: Consider any decomposition of

into full-rank matrices and , where
. For a state taking values define

the dynamics

(5)

for the state-dependent matrix

(6)

where denotes the Jacobian of evaluated at . As-
sume that the initial condition of (5) is ,
where is the steady state of the isolated
fast layer’s dynamics (3).
As the trajectory satisfying (5) arbitrarily closely

approximates (in ) the trajectory satisfying (1).
Proof: This result follows from Tikhonov’s Theorem [36]

applied to (2) [21]. The key to the proof is that
maps the nominal evolution of the iso-

lated slow layer to the response of the fast layer, providing a
‘correction’ perturbation as the fast reactions equilibrate.
The timescale-separated ODE (2) represents the feedback in-

terconnection of a fast and slow layer. The singular perturbation
of this system results in (5), where the fast dynamic layer has
been approximated as a static layer. The dynamics in (5) are
a projected version of the slow layer’s isolated dynamics (4),
where the pre-multiplying matrix is de-
fined by the fast layer’s structure and reactions .

III. FAST LAYERS AND CONSERVATION RELATIONS

A. Model Reduction

Recall that independent conservation relations in
the general ODE model (1) are defined by the elements

of any basis for the left null space of . For the
layered ODE (2), these conservation relations are defined by
the left null space of . In other words, the state
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Fig. 1. Schematic diagram illustrating the effect of the fast layer on the slow
layer, implied by (5), dropping tilde notation. The isolated slow dynamics

are projected into along , as shown
by the parallel red lines. This projection is generally non-orthogonal, as

.

space is defined by the combined stoichiometric matrices of the
slow and fast layers.
However, consider instead the approximate model (5), drop-

ping the for simplicity. The matrix in (6) is clearly
a projection, and thus so too is the perturbation in
(5). Fig. 1 depicts the effect of on the isolated slow
dynamics at a given state value . It is easy to show that

, implying that the derivative
in (5) always takes values in the kernel of . In other
words, the linear space lies tangent to the non-
linear slowmanifold defined by . Furthermore, the
associated fibres [37], locally to the slow manifold, are in the
space . The equality
implies that if is in the column space of ,
then , and the approximated system is
thus at steady state, even when the isolated slow dynamics are
non-zero.
As defined in Section II, conservation relations in (5) are de-

fined by vectors satisfying for any slow flux
vector . The discussed in Section II are constant, and
therefore apply for all state values. However, the following re-
sult is local, in the sense that an arbitrary state value is fixed.
We then seek the left null space , which
is clearly state dependent. The following result is closely related
to the identification of the equilibrium or slow manifold [18],
[37], [38].
Theorem 3: Fix a state value . The left null space

defining the vector space
orthogonal to the approximated model (5) is given by

(7)

where, for each layer , the stoichiometric matrices can
be decomposed into for full-rank matrices

and , with .
Proof: The transpose of any projection is also a projection.

Hence, any can be written as the unique sum
of and .

Clearly , and

We proceed to show (7) by showing both inclusions.

Consider any , uniquely decomposed into
with and .

To show that is a subset of the right-hand side of (7)
it remains only to show also that . Since

and , the equation

implies that .
To show the reverse inclusion, consider any

, decomposed into .
Clearly , from which it follows that

. Finally, implies that
. Since also , it follows that

and hence that .
This result means that each independent conservation

relation for (5) is one of two types. First, any element
satisfies . Thus

and hence for a constant vector , for
all . The initial conditions of (5) given in Theorem 2 imply
that , assuming that the isolated fast layer (3) is stable.
Hence generates conservation relations

(8)

for all . These conservation relations are nonlinear if
is nonlinear, and depend on the parameters (apart from ) used
to define the fast reactions . However, they only apply after
a fast transient, during which the exact trajectory of (2) quickly
approaches the space defined by (8).
The second class of conservation relations is given by

. It is the space of conservation relations
that apply on both isolated timescales (3) and (4). These con-
servation relations must be linear, and are independent of the
parameters of the fast network, being instead characterized by
the stoichiometric structure of both layers.
To illustrate how Theorem 3 corresponds to a layered net-

work’s conservation relations, consider the toy system

where parameterises the timescale separation. The
exact ODE for this system has stoichiometric matrix with

and conservation so
that the state values lie in a plane embedded in . However,
the dynamics of this system can be approximated as (5) using
Theorem 2. We calculate

according to the formula in (6) to give
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where and notation is dropped. Note that
is independent of because the dynamics are linear.

The vectors clearly
satisfy . Furthermore, both two-dimensional left null-
spaces of and intersect to give . Thus two
independent conservation relations of this system are defined
by and . Clearly,

depends on the fast layer’s parameters and
, and can be written in the form (8) as .

However, is independent of and
.

B. Designing Conservation Relations
The results in Section III-A suggest that timescale separation

can be exploited to design approximate constraints on a system’s
state values for times beyond a fast transient.
Consider a given network that can be decomposed into fast

and slow layers based on reaction speeds. The conservation re-
lations of its exact model (2) correspond to the left null space

of . However, we have shown that, beyond
a fast transient, the approximated state satisfies the conservation
relations (7). If , then of these conservation
relations are in general tunable, since they depend on fast re-
actions’ parameters, and nonlinear, since they are defined by a
fast flux vector that may be nonlinear in . Importantly,
the conservation relations (7) are independent of , so that
the conservation relations and slow dynamics can be designed
independently.
We can exploit this principle for Synthetic Biology as fol-

lows. Suppose that all reactions of a given network occur on the
same timescale, with a fixed state space of dimension (em-
bedded in ) defined by linear conservation relations.
Now suppose that we wish to redesign the behavior of this net-
work to satisfy new conservation relations. The approach that
will be taken is to construct a fast layer (that is, implement a
number of fast reactions) that enforces the specified constraints
on the slow timescale, guaranteed to hold for any design of its
slow dynamics.
The first part of in (7) implies that there are non-

linear, tunable conservation relations. The second component
means that, in addition, the fast layer’s stoichiometric matrix
can be designed to remove at most of the original
linear conservation relations. Assuming that , so that the
isolated slow layer has no conservation relations, then the only
conservation relations resulting from the fast layer will be the

nonlinear algebraic equations .

IV. CONSTRAINING GENETIC REGULATION
Consider a gene regulatory network (GRN) of genes, each

producing a transcription factor (TF) for . Let
represent the concentration of at time . This network

can be modelled by the coupled ODEs

(9)

for . The terms define how the TFs
regulate the expression of . In the notation of (1), the stoi-
chiometric matrix is the identity ; there are no conserva-
tion relations, since .

Typically, the terms are the primary target of the design
effort for synthetic GRNs. For example, if the expression of
is promoted by , we may model this by

where the parameters, corresponding to experimentally imple-
mented ‘dials’, may be tuned to produce specified behavior [3].
In this paper we propose a complementary approach to GRN
design that overlays a fast layer designed to constrain the pos-
sible values of the state , independently of , and .
The fast layer will take the form of a protein interaction net-
work (PIN) involving direct interactions between TFs; as is
common, the PIN reactions are assumed to be much faster than
GRN processes [23]. Given the fast layer and resulting conser-
vation relations, the GRN (9) can be designed separately. This
layered structure reflects design principles of evolved networks
that combine genetic regulation with protein interaction [39].

A. One Nonlinear Conservation Relation
For example, consider the nonlinear constraint

on the state-space of the GRN (9), for . We make no
assumptions on the slow parameters and or the coupling
terms . The required conservation relation is implemented
by introducing the following direct interactions between the TFs

under arbitrary genetic regulation.
1) Implementation One: Consider the single fast reversible

reaction

(10)

for the small parameter . For example, each reac-
tion directionmay be implemented by introducing two enzymes,
whose concentrations can tune the parameters and respec-
tively. When this fast layer, of dimension , is integrated
with the slower GRN layer the resulting dynamics can be mod-
elled by (5). Then is given by (6) as

...

with . For any fixed state vector , the
set defining the conservation relations in the system can
be deduced from (7) as the -dimensional space

which is clearly both parameter- and state-dependent. Note that
are no conservation relations arising from the space

, since .
Equation (8) implies that the single conservation relation de-

fined by is given by the expression
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Fig. 2. Two implementations of constraint [blue surface] with
slow layer (9) and fast layers (10) [solid line] and (11) [dotted line]. The slow
layer’s parameters are , ,

, and ; both fast layers’ parameters are , , and
, to give . Initial conditions are .

Hence, tuning the fast reaction rates in the PIN (10) such that
ensures that the required constraint holds at

times beyond a fast transient for any design of the GRN (9).
2) Implementation Two: Alternatively, the same conserva-

tion relation could be implemented by the catalytic reaction

(11)

where is neither consumed nor produced, but does influence
the forward reaction rate. Assuming that the forward reaction
rate is linear in implies the same form for ,
and hence the same conservation relation.
Although the resulting conservation relations are equal, there

is an important difference in behavior between the implementa-
tions (10) and (11), as depicted in Fig. 2. Both trajectories lie on
the surface , for beyond a fast transient. However,
the trajectories on this surface, given identical slow layers, are
very different.
Consider each of the two implementations’ column spaces

. For (10) this space is spanned
by , while for (11) it is spanned by

. Recall from Fig. 1 that these spaces
define how the slow dynamics project onto . Hence
using (10) implies that , and are projected by ,
while using (11) implies that will not affect , so that
remains under genetic control only.
Similarly, the steady state of the isolated fast layer (3) changes

depending on its stoichiometric matrix. Hence, the choice of
implementation also determines the approximate ‘initial condi-
tion’ given in Theorem 2, corresponding to the state value after
the fast transient. The point at which the (exact) trajectory joins

the specified state space therefore depends on the fast layer’s im-
plementation. For example, Fig. 2 shows that for (11) the value
of remains approximately constant at while

and quickly equilibrate over small values of .

B. Combining Conservation Relations
As another example of a possible nonlinear state space con-

straint, consider the parabolic relationship . Again, we
propose two possible fast layer implementations.
1) Implementation One: Consider first the fast reaction

(12)

where again . It is easy to show that ,
implied by (8), will hold for times beyond the fast transient.
Fig. 3 displays the trajectory resulting from this implementa-

tion. We plot the constraint in and , together
with a simulated trajectory of the layered system (2), where for
simplicity the TFs are decoupled genetically through putting

. Beyond the fast transient, the state values are clearly
constrained by the designed conservation relation.
2) Implementation Two: Alternatively, the fast PIN could be

comprised of two reactions

(13)

This layer is now of dimension , implying that two
conservation relations hold. The relationship
holds as a result of the first reaction, and the second implies that

. Thus designing parameters such that
will ensure that .
Similarly to Fig. 3, Fig. 4 depicts this implementation. Each

blue surface in Fig. 4(a) corresponds to one of the two inde-
pendent conservation relations, while the curve in Fig. 4(b) is a
projection of their intersection into -space. In both plots,
we show a simulation of a representative GRN integrated with
the PIN (13). Clearly, past a fast transient, the state values lie
in the intersection of the independent conservation rela-
tions, which can be implemented separately.
This example demonstrates that fast reactions can be com-

bined to achieve specified conservation relations. However, the
dimension of the fast layer will tend to increase when com-
bining multiple reactions, imposing additional conservation re-
lations and leading to further constraints. This may result in
some redundancy in the tuning strategy: in this example, halving
and doubling gives the same value for , and hence the same

specified behavior in . However, this choice results in signif-
icantly different behavior in , as the new parameters reshape
both surfaces in Fig. 4(a).

C. Fast Layers and Signal Propagation
A potential application for this design approach is to enforce

a signal direction in the underlying GRN. Consider an example
of genes where the TF products and co-regulate
one another, and likewise for and , but where there is no
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Fig. 3. Implementation of constraint with slow layer (9) and fast layer (12) of dimension . All parameter values are as in Fig. 2, with initial
conditions . (a) Projection of coordinates . (b) Projection of coordinates .

Fig. 4. Implementation of constraint with slow layer (9) and fast layer (13) of dimension . The systems have the same parameter values and
initial conditions as in Fig. 3, and additionally so that . (a) Projection of coordinates . (b) Projection of coordinates

.

direct cross-regulation between these two TF pairs. A typical
approach to connect these two modules might be to redesign the
promoters of genes 3 and 4 so that or also depend
on or , thus putting the module downstream of

. However, the behavior of the upstreammodule is likely
to change as a result of the load from the downstream module
[22], [40].
Our design strategy is to instead move the coupling design

into a fast PIN layer. Note that this is not the same as using
or as an input into the genetic regulation of or .

Rather, it couples the modules by enforcing the concentrations
to satisfy a specified conservation relation. Nevertheless, as dis-
cussed in Section IV-A, the chosen implementation will affect
signal directionality.
For example, the modules can be coupled such that .

There are at least three possible implementions of this relation
by a fast PIN layer. First is the reversible conversion

(14a)

where the fast forward and reverse rates are tuned to be equal.
An alternative is to consider an additional protein such that

(14b)

where catalyses the fast forward conversion of into .
The position of and could also be exchanged to give a
third possibility

(14c)
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If the parameters of the latter two fast layers are tuned such that
, the conservation relation results from

any of these implementations.
However, the column spaces of these implementa-

tions imply vastly different behavior. In (14a) both and
have dynamics with fast and slow components. Hence, the cou-
pling between the two modules implemented by this fast layer
is bidirectional; we conserve such that the slow dy-
namics of either species will drive the slow dynamics of the
other. Tuning the parameters used in and will
therefore affect the behavior of and , and vice versa.
However, in the fast layer (14b) there is no component

in . Therefore the dynamics of in the approximated
system equal the isolated slow dynamics of . Thus, the

module is downstream of the module, such
that the dynamics of no longer depend on , or .
Instead, is driven by . Similarly, (14c) implements the
reverse cascade structure, so that is driven by . Hence,
the appropriate design of the fast layer can propagate signals
between modules in either direction, or both.
Importantly, none of these implementations require the inter-

action terms to be remodelled. Furthermore, nonlinear con-
servations (such as those discussed in Sections IV-A and IV-B)
may couple modules in more interesting ways than .
Additionally, modules may be connected through a combina-
tion of actuation (i.e., GRN design) and through coupling (i.e.,
PIN coupling of modules). The details of this combined design
strategy will form the basis of further work on this approach.

V. DISCUSSION

The goal of this paper has been the design of fast layers that
enforce specified conservation relations on a biosynthetic net-
work’s state values. It is natural to consider to what extent a
general constraint can be satisfied by this ap-
proach. Section III shows that the independent nonlinear
conservation relations are equivalent to

. Thus, the fast layer may be designed such that
a linear combination of these conservation relations matches the
required constraint. However, if this is not possible, the imple-
mentation of by (13) demonstrates how constraints
can also be implemented as the intersection of multiple inde-
pendent conservation relations (see also Section V-A-1).
It is beyond the scope of this paper to formulate all possible

implementations of general as a fast layer. Sec-
tion IV demonstrates that there are can be multiple appropriate
implementations for a given . Although the constraints con-
sidered above are polynomial, other non-polynomial conserva-
tion relations could conceivably be implemented by fast reac-
tion rates not modelled by mass-action kinetics. Thus, this work
is a first step towards a systematic design strategy for arbitrary
conservation relations.

A. Fast Layer Structure

The state values of a given network can be constrained by
imposing tunable conservation relations through a fast layer.
While the flux vector of the fast layer determines the shape
of these conservation relations, we have seen in Section IV that

the stoichiometric matrix of the fast layer is also important in a
number of ways.
1) Fast Intermediates: Recall that the latter two implemen-

tations of inter-modular coupling in (14) used an additional in-
termediate species . This can be a useful way of combining
together multiple conservation relations. For example, suppose
we wish to implement . By introducing a new in-
termediate species into the system, this conservation relation
can be implemented by

The two conservation relations and
can be combined to give the required conservation ,
where the constants and depend on the fast
layer’s parameters.
2) Steady State Fluxes: The existence of multiple imple-

mentations of the same conservation relation has been observed
in each of the preceding examples. The choice of implementa-
tion has an important effect on the system’s dynamics under the
specified constraint.
For a general reaction network (1) the right null space

defines the space of fluxes for which the system is at
steady state. If the network can be written in the layered form
(2), we can approximate this system by (5) and instead consider
the rates of the slow reactions as the system’s flux
vector.
The space of steady state fluxes for (5) is

which is a vector subspace of that includes . If
then . However, if

has positive dimension, then the dimension
of will be larger than the dimension of . Incor-
porating a fast layer thus increases the space of steady-state flux
distributions.
The space identifies the slow fluxes that are ‘projected out’

by the fast layer. Consider extending the state of the GRN ex-
ample with extra species , so that the slow layer’s stoichio-
metric matrix is for the identity and zero
vector . For the fast layer (14b)

Therefore for any slow reaction
given by (9). Hence the component of any slow flux vector
is sent to zero by (5), and the resulting dynamics are independent
of , , and .
The set implies that the fast layer’s structure can expand

the space of steady state slow fluxes for the layered system,
and hence will influence the design of the slow layer. This dual
problem will be an important topic of further research in layered
approaches to Synthetic Biology.
3) Replacing Existing Conservation Relations: In isolation,

the GRN (9) used as the example slow layer has no conservation
relations, as . Hence the conservation relations
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of the combined system are defined by . Imple-
menting a fast layer of dimension thus results in nonlinear
conservation relations. However, other slow layers may have
positive dimension of , so that further conserva-
tion relations may then be contributed by .
The fast layer’s stoichiometric structure therefore becomes im-
portant for selecting which of the slow layer’s original
conservation relations remain valid for the approximation (5).
Relaxing the assumption that therefore extends the

impact of the fast layer from constraining a given state space
(with extra conservation relations) to also removing existing
conservation relations. Further work is necessary to determine
how best to exploit this additional flexibility.

B. Slow Layer Design

We have shown how conservation relations can be imple-
mented independently of the slow layer’s parameter values.
Although there has been a great deal of work on parameter
tuning in Synthetic Biology, it is not yet clear how the design of
state space constraints will combine with that of slow dynamics.
Once a conservation relation is implemented, how should the
slow system be tuned? Indeed, is there a conservation relation
that would make the design of a specific behavior in a given
slow network any easier?
Furthermore, slow reactions are often easier to tune than a fast

layer. In this case, a slow layer may be constructed to achieve a
design specification given a fixed fast layer. This strategy under-
lies the genetic control of metabolic networks, where a synthetic
genetic network steers the steady state of a metabolic network
to a desired configuration [25], [26]. A key goal of future work
is to investigate strategies for the combined design of fast and
slow layers to produce specific, complex behaviors.

C. Experimental Implementation

As an example of networks with layers that separate in
timescale, we have considered a GRN layer combined with
a faster PIN layer. Designing the resulting conservation re-
lations requires control of the topology and reaction rates of
the protein interactions. Recent studies have identified various
means by which transcription factors and related proteins and
microRNAs interact at the post-translational level [41]–[43].
A number of methods can modulate these protein interactions

[3], for example using small molecules [44] and protein engi-
neering techniques [11], [12] to interrupt dimerization affinities.
Other fast post-transcriptional interactions such as phosphoryla-
tion can be modulated by kinase and phosphotase levels. How-
ever, any modifications to TFs may cause unexpected crosstalk
within the PIN layer, or also affect their regulatory behavior.
Such context-dependent failure [13] is caused by the non-mod-
ularity of protein design, which will provide an important chal-
lenge for the experimental implementation of a layered design
strategy.

D. Stochasticity

A vital issue for experimental implementation is the effect
of noise, which our framework has so far neglected. Due to
stochasticity, the fast layer’s nonlinear conservation relations

hold only in expectation; the fast layer’s contribution
quickly approaches a steady-state distribution that varies slowly
with . It has been shown in [29] that, for the linear noise
approximation, the statistics of the fluctuations of fast variables
around a slow manifold do not match the heuristic derivation
of a stochastic version of the reduced deterministic model, and
should instead be calculated by reducing the full stochastic
model. More recently, conditions quantifying the accuracy of
the heuristic derivation were identified [30].
An important development for the further investigation of

layered design is the probabilistic interpretation of tuning the
fast reactions such that the state values are distributed in a re-
gion of state space around the deterministic slowmanifold. Sim-
ilarly to shaping this manifold, it may also be possible to shape
the distribution by the design of the fast layer. We could use
a heuristic stochastic model based on the approximate system
(5), but the results of [29], [30] suggest instead that we should
extend the decomposition described in [21] to reduce layered
stochastic models.

VI. CONCLUSION
In a biomolecular network, layered by timescale, the fast

layer constrains the state space through conservation relations
valid beyond a fast transient. In contrast to systems on one
timescale, a number of these conservation relations are, in gen-
eral, parameter-dependent and nonlinear. Hence, conservation
relations can be designed by constructing an appropriately
structured and tuned fast layer. This principle can be used to
independently design additional fast reactions that constrain a
slow system’s state values to specification.
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