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ABSTRACT: Accurate control of a biological process is essential
for many critical functions in biology, from the cell cycle to
proteome regulation. To achieve this, negative feedback is
frequently employed to provide a highly robust and reliable
output. Feedback is found throughout biology and technology, but
due to challenges posed by its implementation, it is yet to be widely
adopted in synthetic biology. In this paper we design a synthetic
feedback network using a class of recombinase proteins called
integrases, which can be re-engineered to flip the orientation of
DNA segments in a digital manner. This system is highly
orthogonal, and demonstrates a strong capability for regulating
and reducing the expression variability of genes being transcribed
under its control. An excisionase protein provides the negative feedback signal to close the loop in this system, by flipping DNA
segments in the reverse direction. Our integrase/excisionase negative feedback system thus provides a modular architecture that
can be tuned to suit applications throughout synthetic biology and biomanufacturing that require a highly robust and
orthogonally controlled output.

Many important biological processes, such as cell cycle
control, use negative feedback to ensure highly robust

and reliable operation. Negative feedback is employed
extensively in engineered systems that need regulation: by
using measurements of a system’s output to influence its input
(known as closing the loop) it is possible to reduce a system’s
response time, its input−output gain, and the dependence of its
response on certain system parameters and external dis-
turbances, which makes its overall performance more robust
to fluctuations in both the system’s properties and its
environment.1−3 The advantages of negative feedback in
natural biological systems and in engineering have motivated
researchers to implement similar features in synthetic biological
systems.4−8 The use of transcription factors to regulate
expression dynamics is a long-established approach to
implementing feedback;9−15 however, this approach has
potential limitations: the reliance of a closed-loop system on
endogenous host proteins can result in problems with cross-
talk, which arise from interference between its constituent
regulators and other cellular processes.16 Furthermore, the
resulting closed-loop system may have very low gain (depend-
ing on the repression strength of the regulating transcription
factor), which is in some systems undesirable and can make
tuning of downstream processes challenging. One approach to
overcoming the low gain of negative feedback systems is to
redesign protein expression rates to compensate for the

reduced steady state;10 however, this leads to further design
challenges and uncertainties. Thus, it can often be very difficult
to engineer a predictable orthogonal output using genetic
regulation. The challenges posed by the implementation of the
negative feedback systems discussed result in an under-
utilization of this otherwise clearly advantageous principle,
widespread in natural and engineered systems, and as such
there is significant need for robust, orthogonal, and easily
applicable biological negative feedback architectures.
Serine integrases and their associated excisionases are a class

of viral proteins that mediate integration and excision of the
phage genome during the lysogenic and lytic phases of the
phage life cycle.17−20 Integrases allow phages to integrate their
genome into the host cell and enter the lysogenic phase. They
catalyze the insertion of DNA through the recognition of
specific ∼50 base-pair-long binding sites referred to as attB and
attP (attachment Bacteria and attachment Phage, respectively).
Integrases belonging to many phages, such as TP901-1, Bxb1,
and ϕC31, recognize orthogonal attB and attP recognition sites
via a helix-turn-helix domain.21 The process of integration is
undertaken via strand cleavage, inversion, and ligation to form
attL and attR (attachment Left and attachment Right,
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respectively) sites.22 A central catalytic domain with a
conserved serine residue catalyzes this reaction.22

Excisionases, via interaction with integrases, allow phages to
enter the lytic phase of their life cycle. Passage from lysogenic
to lytic phase is usually controlled by the cleavage or
phosphorylation of a transcription factor, which flips the bias
of a high gain bistable switch toward the expression of the
system’s integrase and excisionase proteins. The expression of
an excisionase cofactor allows the integrase-excisionase complex
to recognize attL and attR sites and subsequently catalyze the
reverse reaction back to attP and attB.23,24 Research has shown
a potentially symbiotic nature in some such phage−bacterium
interactions: For example, in A118-like prophage the phage
regions are excised, remain nonintegrated yet also nonlytic, and
may subsequently be reintegrated into the host genome to
regulate host genes depending on the state of the cell and its
environmental conditions.25

Integrases and excisionases have been shown to mediate site-
specific integration, excision, and inversion depending on the
orientation of their binding sites,22 which has led to a particular
focus on their characterization and application in the field of
Synthetic Biology.26,27 By permanently rearranging DNA,
integrase/excisionase-based systems can maintain their states
over many cellular generations, providing a level of evolutionary
robustness that is difficult to achieve using transcription factor-
based systems.32 This class of proteins confers the full range of
logic at the genetic level28,29 (XOR, AND, OR, XNOR, etc.)
and allows for a wide range of applications, such as highly
sensitive medical assays in healthcare and memory storage,30−33

as well as metabolic pathway assembly.34 Given the digital and
high gain nature of integrase devices, their use in Synthetic
Biology tends to require careful tuning of system parameters to
avoid a high level of output uncertainty. This arises due to the

inherent noise in cellular processes and environments, as well as
variability in the integrase-mediated flipping of DNA regions,
both between cells and between cell populations.32 As a
consequence the expression level of a particular protein of
interest in an integrase circuit is often suboptimal and
substantially variable, a problem currently limiting the wide
application of integrases as predictable and robust biological
components for biomanufacturing, healthcare, or environ-
mental remediation systems.
Here we present an engineered synthetic negative feedback

loop based on an integrase/excisionase system which could be
applied in a diversity of biological settings. We redesign a
previously reported DNA register28 (which expressed Green
Fluorescent Protein (GFP) in response to DNA inversion) on a
multiple-copy plasmid to coexpress excisionase with the protein
of interest, in our case a fluorescent reporter, as illustrated in
Figure 1. The excisionase closes the loop around the high gain
integrase system by enabling registers in an ON state to
stochastically and transiently switch to an OFF state. Over a
sufficiently long time period the distribution of registers in
either state stabilizes, which due to the coupling of excisionase
and GFP production results in a reduced variation in GFP
expression between cells in the closed-loop system (both in
absolute terms, and when normalized by mean expression
levels) when compared to an open-loop system (which shows
substantial variability due to gene expression noise). In both
cases variability also arises due to cell-to-cell heterogeneity, for
example due to variations in plasmid copy number or
differences in proteome. In the closed-loop case, as will be
demonstrated later, the correlation of excisionase and GFP
production results in a reduced variation in GFP expression
when compared to the open-loop system.

Figure 1. Schematic architecture of the open-loop (top) and closed-loop (bottom) expression systems developed in this paper. The correlated
expression of excisionase and GFP closes the loop around the integrase’s switching process, allowing stochastic switching between ON and OFF
states, thereby implementing negative feedback. Thus, while all DNA registers in the open-loop system eventually switch to the ON position, those
in the closed-loop system are regulated by excisionase concentration leading to smaller variability in the number of ON registers per cell: If GFP
concentration is high (low), excisionase concentration will be likewise, resulting in more OFF (ON) registers and down (up) regulation of GFP
expression. Variability introduced by fluctuations in plasmid copy number, as illustrated in the central panel of this figure, is one of many noise
sources for which negative feedback can compensate. The yellow and blue triangles represent attP and attB recognition sites, while half-colored
triangles represent attL and attR.
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■ RESULTS

Assembly of the Integrase/Excisionase System. We
implemented two synthetic systems based on the integrase
DNA switching mechanism, depicted in Figure 1. Both systems
placed a DNA coding region between the attachment sites attB
and attP, counter-aligned from the constitutive promoter such
that the enclosed proteins would not be initially expressed; we
call this state the OFF state. The presence of integrase,
expressed from its own plasmid (under the regulation of TetR)
in response to anhydrotetracycline (aTc) inducer, inverts the
DNA coding region to align with the constitutive promoter,
thereby enabling expression; we call this state the ON state. In
the open-loop system, that is, the system without feedback, the
invertible DNA region codes only for GFP reporter, while in
the closed-loop system (that with feedback) it codes for both
GFP and the cognate excisionase. This means that in the
closed-loop system the presence of excisionase with the
available integrase enables the reversion of the coding region
back to its initial OFF state. Thus, negative feedback is achieved
by using excisionase as a proxy for fluorescence; when GFP
concentration is large, the correlated concentration of
excisionase acts to bias the random walk toward lower numbers
of ON registers, thereby reducing GFP expression. To prevent
the closed-loop system from heavily biasing toward the OFF
state we also incorporated a strong ssrA degradation tag
(already reported,32 see Table S12 for sequence) on the
excisionase to ensure that it was degraded quickly. To ensure
the proposed feedback mechanism was working as intended we
performed control experiments (see Figure S1) by mutating the
excisionase gene, and by removing the ssrA tag, demonstrating
that these choices were important for our system’s function.
System Modeling and Simulation. To investigate the

performance of our integrase/excisionase-based implementa-
tion of negative feedback we developed a mathematical model
that combines both stochastic processes and differential
equations, for which a block diagram is presented in Figure 2
(for further details see the Methods section). Representative
model parameters were chosen in line with the assumptions
made during the design of our system in order to define the
relative rates of different processes. For example, excisionase
degradation was made fast due to the presence of an ssrA tag,
integrase/excisionase flipping rates were defined such that this
process would occur over a multiple-hour time-scale, and
plasmid copy numbers were defined based on known properties
of the plasmid backbones used. Other free parameters in the
model were subsequently tuned so that the model’s behavior

would qualitatively capture that exhibited in the experimental
data.
Because of the high variability found in integrase-based

systems,32 our model includes expression noise terms for each
system component. A range of approaches to modeling gene
expression noise exists,35,36 of which many have demonstrated
applicability to the proteins considered in this work.37 Our
chosen approach, the introduction of random scaling
parameters that capture cell-to-cell heterogeneities that cause
variability in protein production, was selected to account for
both intrinsic (the inherent stochasticity of biochemical
processes) and extrinsic (the fluctuations in cellular compo-
nents) noise sources.38,39 By utilizing an approach that accounts
for variability introduced in a range of cellular processes our
model can replicate the impact of major noise sources (both
gene-specific and cell-wide40) without requiring excessive
computational overhead. We model the time evolution of
species concentrations using differential equations of the
general form

α β= × × − ×
y
t

f f y
d[ ]
d

[ ]1 2 (1)

where [y] is the concentration of a species whose noisy
expression is being modeled, and f1 and f 2 are general functions
that may depend on system parameters and concentrations.
The random parameters used throughout are α, which was
chosen to simulate inherited differences in behavior between
populations grown from single cells, and β, which introduces
further cell-to-cell variation within each population. Thus, α
accounts for some inherited noise sources (such as long-term
inherited differences in proteome) as well as culture-wide
variations (such as environmental differences between bio-
logical triplicates), while β accounts for cell-to-cell noise
sources (such as variations in plasmid copy number, which can
strongly impact negative feedback systems35) and small scale
external noise (such as local environmental inhomogeneities).
Simulated triplicates were formed by splitting cells into three
populations, each with a different value for α, and within each
population values for β were sampled for individual cells. With
this minimal noise model we were able to predict (from a
theoretical standpoint) many of the benefits our negative
feedback system would provide, which were then confirmed by
experimentation as discussed in the following sections.

Introduction of Excisionase Reduces the System’s
Expression Level and Output Variation. Using our
mathematical model we simulated the end-point response of

Figure 2. Block diagram for the modeled feedback system. The inducer (aTc) acts as an input to the deterministic expression of integrase via its
interaction with the regulatory protein TetR. Integrase (and excisionase) concentration determines the transition probabilities of the random walk of
the integer-valued state d representing the number of ON registers. Excisionase acts as negative feedback, because it biases the random walk toward
transitions d → d − 1. The state d then acts as a random input to the deterministic protein expression dynamics, together with randomly selected
constant scaling parameters α and β to represent variability between populations and cells.
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our system (defined to be the fluorescence output 24 h
postinduction) to a range of anhydrotetracycline (aTc)
concentrations. Figure 3a shows the steady-state expression

per cell, which is uniformly decreased in the closed-loop when
compared to the open-loop system. This result was then
confirmed experimentally, with the data (presented in Figure
3b) exhibiting a near-uniform trend toward lower expression in
the closed-loop system. Figure 3 also demonstrates that over a
range of aTc concentrations, in both simulation and experi-
ment, the variation in end-point expression of the closed-loop
system is lower than in the open-loop. For the end-point
experimental data in Figure 3b, we find that on average
inclusion of the negative feedback system reduces the
coefficient of variation of fluorescence (the standard deviation
of the triplicates’ mean fluorescence divided by the mean
fluorescence of each triplicate set) for each triplicate set (with
aTc ≥ 15 ng/mL) by a factor of ∼2.8.
To investigate the impact of negative feedback on the

system’s transient response we simulated time-course data for
GFP expression-per-cell with 50 ng/mL aTc concentration
(Figure 4a), and then performed the corresponding experiment
for comparison (Figure 4b, for other aTc concentrations see
Figure S2). A control experiment was performed using the
same procedure with constitutively expressed GFP to provide a

time-series comparison with the integrase-based system (Figure
S3). In both simulated and experimental data the closed-loop
system provides a reduction in expression uncertainty: the size
of the error bars, again when normalized by the mean
expression level at a given point, is reduced for the closed-
loop system, even early in the response when the mean
expression levels do not significantly differ. We tested our
system’s robustness to changes in plasmid copy numbers, for
both the plasmid containing the integrase gene (Figure S4),
and that with the reversible DNA register containing
excisionase and GFP (Figure S5). Simulations predict that
the noise-reducing property of our negative feedback system is
maintained over a wide range of copy numbers, except for the
case (given the previous parameter values) in which the
plasmid containing excisionase and GFP has very low copy (as
would occur with genome integration). In this circumstance
excisionase expression levels are too low to provide an adequate
feedback signal, though this can be overcome (see Figure S5)
by increasing the rate of excisionase expression (for example, by
using a stronger RBS).

Cell-to-Cell Noise Is Reduced by the Synthetic
Feedback Loop. Having demonstrated that our negative
feedback system can provide closer alignment between
population mean expressions (as depicted in Figures 3 and
4), we sought to investigate its impact on the distribution of
GFP expression within a population of cells via simulations and

Figure 3. End-point responses for the open- and closed-loop systems
over a range of aTc inputs. (a) The simulated system run for 24 h,
where the mean end-point GFP concentration per cell (in arbitrary
units) for 2000 sets of triplicates (each consisting of three populations
of 2000 cells) is plot, with error bars indicating the mean standard
deviation in fluorescence within each triplicate set. (b) Averaged end-
point (taken to be 24 h) GFP expression from triplicate biological
repeats, where error bars indicate the standard deviation in
fluorescence of the triplicates. The y-axis is GFP expression (measured
via culture fluorescence) divided by optical density (OD), in arbitrary
units. For both experimental and simulated data the feedback system
demonstrates a reduction in steady state fluorescence, as well as a
reduced variation (when normalized by mean expression level) in
expression between triplicates.

Figure 4. Time-course fluorescence data for the open- and closed-loop
systems induced with 50 ng/mL aTc over 12 h. (a) The simulated
system as in Figure 3, where the overall average of the mean and
standard deviation of 2000 triplicates is plot each 30 min; (b) averaged
time-course GFP expression from triplicate biological repeats, for
which error bars denote the standard deviation of the individual
triplicate means. The y-axis is GFP expression (measured via culture
fluorescence) divided by OD, in arbitrary units. Equivalent plots for
the full range of inducer concentrations are shown in Figure S2. In
both the experimental and simulated data the feedback system
demonstrates a reduced variation in output fluorescence levels.
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flow cytometry. We simulated triplicate colonies over the
course of 24 h, recording GFP expression distribution
histograms at different time points (Figure S6). We observe
that expression distributions for the closed-loop system are
narrower at all time points (when compared to the open-loop),
and that population peaks are also more closely aligned. This
prediction was validated experimentally using single cell flow
cytometry to obtain the histograms in Figure 5, where each plot
depicts the GFP expression distribution of three populations
(biological triplicates) of an open-loop or closed-loop system at
a given inducer concentration. In the presence of feedback we
find a closer alignment of the triplicates’ means, as seen in
earlier experiments, and also observe that compared to the
open-loop histograms, those of the closed-loop system have a
narrower distribution of fluorescence within each population.
This is made clear in Figure S7, in which the data from the
closed- and open-loop cases for one of the triplicates has been
overlaid. The reduction in population variation is quantized by
calculating coefficients of variation (CV) for each distribution,
which are on average 25% lower in the closed-loop system
when compared to the open-loop (Figure S8).
Downstream Process Is Easily Tuned to a Predictable

Threshold. Using the Salis Ribosome Binding Site (RBS)
calculator41 we generated a small library of GFP expression
variants (that is, GFP genes with different RBSs) over an
approximate 10-fold range in strength, and integrated each one
into the closed-loop system. For each of these four variants we
observed a reliable and distinct level of expression in the
downstream process reporter (see Figure S9), which correlated
with the relative theoretical RBS strengths. This demonstrates a
straightforward approach via which the implementation of our
feedback system can be tuned to reliably set a controlled gene’s
output to a desired level.

■ DISCUSSION

Our results demonstrate a good correspondence between the
qualitative behavior of the simulated and experimental systems,
in both cases highlighting the beneficial properties of negative
feedback (closed-loop) systems. Figure 3 demonstrates a
reduced steady-state response in the closed-loop system,
which can be justified as follows: in the open-loop system the
DNA registers can only switch ON, without possibility of
reversion, because of the absence of excisionase. Thus, the GFP
expression of the open-loop system is maximal given the
induction levels and constitutive expression rates of GFP. In
contrast, for the closed-loop system the excisionase expression
provides negative feedback resulting in reversion of DNA
registers, and thus on average a reduced fraction will be in the
ON position, leading to a lower expression level of the GFP
reporter.
Though final output levels of the closed- and open-loop

systems differ in this manner, their behavior aligns closely for
the first few hours of each experiment. This is due to the time
required for sufficient excisionase to be produced in order to
complete the feedback loop, which itself is delayed by the time
required for aTc induction to prompt transcription and
translation of the integrase. A useful feature of many feedback
systems is their ability to reduce rise time, which has previously
been demonstrated in biological systems.10 However, based
upon analysis of time-course data (using the method of
Rosenfeld et al.10) the feedback system considered in this work
did not provide a statistically significant speed-up of system
response. To further study this effect future work will focus on
the utilization of a turbidostat setup that is able to maintain a
culture’s growth in exponential phase.42 Such an approach
would also allow experiments to be run for longer periods of

Figure 5. Single-cell flow cytometry data for triplicates of both the open- and closed-loop systems at a range of inducer concentrations. The x-axis is
the level of GFP expression (measured via fluorescence) per cell, in arbitrary units. The triplicate biological repeats are overlaid and colored green,
blue, and orange, and the gray distribution is a negative E. coli control. We observe that feedback results in higher reproducibility between replicates,
both in terms of the location of the histogram’s peak, as well as its overall shape. The system with feedback also results in a narrower histogram,
indicating a reduction in cell-to-cell variability.
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time, and reduce the impact of changing growth-phase on time-
series data.
In all experiments and simulations it was found that

variability was reduced in the closed-loop system. For example,
at steady state in Figure 3b the coefficient of variation for the
triplicates was reduced by a factor of ∼2.8 in the closed-loop
system when compared to the open-loop variant. This might be
considered counterintuitive, since one could initially hypothe-
size that expressing excisionase introduces extra stochasticity to
the expression of the reporter protein, thereby increasing the
variability of its output. However, to understand why this
intuitive reasoning fails, first note that the regulated output is
not the number of DNA registers in the ON state, but rather
the concentration of GFP. In populations of cells with faster
(slower) constitutive GFP expression rates than the mean, the
correlation between excisionase and GFP expression (since
they are in the same operon) means that excisionase will also be
produced at a correspondingly faster (slower) rate, thereby
speeding (slowing) the rate at which the populations’ DNA
registers revert back to OFF. Thus, populations with GFP
expression that tends away from the mean in open-loop due to
natural cell-to-cell variation will be regulated closer to the mean
in closed-loop, providing negative feedback functionality.
Considering this in the context of our model, if the random
scaling factor αβ is large (small), which might correspond to
the GFP/excisionase plasmid having higher (lower) copy
number in that cell, then for each ON register there will be a
large (small) expression of both GFP and excisionase, which
will reduce (increase) the number of ON registers. So, for cells
with large (small) αβ the level of expression of the target
protein per ON register will be high (low), but there will be
fewer (more) ON registers.
The variability between populations demonstrated by flow

cytometry measurements in Figure 5 (and their similarity to
Figure S6) supports the approach taken to introduce random
variations between cells in our model: we observe (particularly
in the open-loop case) substantial variation between triplicates
in terms of the center of their GFP fluorescence distribution,
which corresponds to varying values for the random parameter
α, as well as a wide distribution of fluorescence values within
each population, corresponding to variation in the parameter β.
Both of these parameters reflect natural differences in behavior
that arise between cells: α accounts for differences (for
example, in the proteome) that are inherited from the small
number of cells used to initiate each triplicate, while β reflects
the spread in cell properties within each triplicate during
growth and experiment (for example, due to inhomogeneities
in environmental conditions or plasmid copy number
fluctuations). Further work could be done to refine the
probability distributions from which α and β are sampled,
including experimental study to determine appropriate
correlations between the βi’s that were used to introduce
noise into different equations.
Though the negative feedback system developed in this work

has achieved a reduction in our system’s interpopulation and
cell-to-cell variability, further development and improvement is
possible. We studied how the parameter D (which represents
the copy number of the pladmid containing the DNA register)
impacts the system’s noise-reducing behavior (Figure S5),
demonstrating that by adjusting system parameters (such as the
excisionase expression or degradation rates) our closed loop
system can be tuned to function at a wide range of copy
numbers (including single-copy genome integration). Given

that the feedback signal is excisionase concentration, the
“actuator” of GFP expression is the flipping of DNA registers to
ON or OFF positions. Thus, the actuator signal controlling
GFP expression is inherently quantized, since only an integer
number d of the total D registers can be ON, leading to
expression rates at fractions d/D of the maximum. In
engineered control systems, quantized signals are known to
degrade performance below the optimum.1 We thus theorize
that an increased number of DNA registers (D) would reduce
the effect of quantization, thereby improving the noise-
attenuating properties of our system further. However, larger
copy numbers would increase the burden placed on the
system’s host cell (something not considered in our modeling),
potentially causing a subsequent loss of output signal.
To further improve the robustness of our integrase-based

system future work may focus on including the expression of
TetR within its own negative feedback loop, thereby
compensating for variability in its (presently constitutive)
expression. This would then reduce noise in the integrase
expression process, making our system’s response to varying
inducer concentrations more reliable. Experimentally this could
be achieved by placing TetR under the control of a pTet
promoter (as was used in this work to regulate integrase
expression), resulting in a negative autoregulatory architecture
(though this may result in leaky integrase expression, which can
circumvent induction systems at very low levels28,32). Similar
architectures have been used extensively in the literature,
demonstrating their ability to robustly reduce expression noise
of downstream genes.14,15

Though existing transcription factor-based negative feedback
systems provide an effective approach to regulation of gene
expression noise,14 the synthetic feedback system developed
herein is of particular interest as it centered on serine
integrases: these components have been extensively charac-
terized in Synthetic Biology, and libraries of integrase proteins
with orthogonal binding domains exist.43,44 Thus, our design is
likely to be easily scalable, allowing a number of integrase-
excisionase feedback circuits to function within the same cell.
Given that phage-derived integrases have been used in systems
with a wide variety of output proteins over the last three
decades,45−47 there should be no significant limitations in
replacing the GFP reporter in our design with an alternate
target protein, making this framework widely adaptable (and
tunable, as demonstrated in Figure S9) to a broad range of
applications in a plug and play fashion. Furthermore, the phage
proteins are non-native and have been shown to function in
many different domains of life.48,49 Therefore, there should be
minimal crosstalk between cellular processes and the feedback
circuit (as is often found in transcription-based feedback
designs), which makes this framework widely transferable
between different hosts and applications. It would therefore be
especially useful in systems that require highly accurate and
reproducible protein expression, such as for the regulation of
degradase expression for degradation of orthogonally tagged
proteins, or to uniformly express a complemented gene in
knock-in studies.

■ METHODS
Plasmids. The target plasmid28 containing GFP flanked by

inverted Bxb1 recognition sites in the opposite orientation to
the P7 constitutive promoter50 was used as the control (open-
loop) system without feedback (P15A origin, 15−20 copies,
Ampicillin resistance,32 see Figure S10 for schematic). The
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excisionase gene32 with a tuned ssrA degradation tag was
synthesized by IDT and inserted after the GFP output by
Gibson assembly51,52 (see Figure S11 for schematic). A second
plasmid28 (ColE1, 50−60 copies, Chloramphenicol resistance)
containing Bxb1 integrase under control of the pTet promoter
was cotransformed in each experiment to provide Bxb1
integrase expression. Sequences for ribosome binding sites
and ssrA tags are provided in Table S12.
Cell Culture and Experimental Conditions. All experi-

ments were performed using E. coli DH5αZ1.53 For each
experiment three colonies were picked from freshly trans-
formed plates into LB media (10 g/L tryptone, 5 g/L yeast
extract, 10 g/L NaCl)54 with appropriate antibiotics and grown
overnight, each was then diluted 1/1000 with reported
concentrations of inducer and appropriate antibiotics. For
end point experiments (Figures 3 and 5) cultures were grown
in a dark incubator for 24 h at 37 °C and 225 rpm in 1.5 mL
opaque deep well plates (Fisher). For time course experiments
200 μL microcultures were prepared in 300 μL black well, clear
bottom plates (Fisher) and run for 12 h in a dark BMG
clariostar platereader with a gain of 1000 at 37 °C and shaken at
200 rpm. The antibiotics used were carbenicillin (100 μg/mL)
and chloramphenicol (25 μg/mL) (Sigma). Anhydrotetracy-
cline (Sigma) was used in reported concentrations.
Measurement and Data Analysis. End point experiments

were centrifuged and resuspended in PBS.55 Individual GFP
and optical density (OD) OD600 measurements were taken
using a Clariostar plate reader with a gain of 1000 before the
data was normalized by OD600. Time course data was collected
using sequential measurement of GFP and OD600. Flow
cytometry was performed on an Attune flow cytometer; for
each sample 50000 cells were recorded. GFP intensities were
quantified by removing any data points below the negative
control population, to remove cell fragments and other artifacts.
All experimental data presented herein is available online.56

Mathematical Modeling. Considering our system at the
single-cell level, we assumed that each cell contains D copies of
the plasmid containing the DNA register depicted in Figure 1,
where the attB and attP integrase recognition sites are
separated by either a reporter coding region (i.e., open-loop),
or by both reporter and excisionase coding regions (i.e., closed-
loop).
Integrase is expressed on a different plasmid of copy number

N, under the control of the tetracycline transcription factor
(TetR). We modeled the concentration of active (repressing)
TetR ([TetR]) by assuming there is a constant total TetR
concentration per cell ([TetR]0) that is reversibly converted to
its inactive (nonrepressing) form at a rate proportional to aTc
concentration [aTc]. This results in the deterministic differ-
ential equation

αβ= − − −
TetR

t
k TetR k TetR aTc

d[ ]
d

( [TetR] [ ]) [ ][ ]1 1 0 1

where k1 and k−1 are the forward and reverse reaction rates,
respectively. The combined parameter αβ1 is a cell-specific
scaling factor for expression rates, chosen as discussed in the
following section, which models the cell-to-cell uncertainty in
protein expression (in this case the equilibrium TetR
concentration per cell). We modeled the dynamics of integrase
concentration ([I]) as the net balance of its expression under
the regulation of TetR with degradation and dilution. This
results in the deterministic differential equation

μ αβ δ=
+

−
t

N
K

K
d[I]
d [TetR]

[I]II 2
I

I

where μI and δI are parameters representing the maximal
integrase expression per plasmid, and the degradation/dilution
rates of integrase molecules, respectively. The parameter KI is
the dissociation constant for TetR repressing integrase
expression, and in this case αβ2 models the cell-to-cell
uncertainty in integrase expression around the nominal rate μI.
Similarly to integrase expression above, when d of the D

plasmids have flipped to the ON state, we have expression of
GFP and (in the closed-loop case) excisionase, and also
degradation of each. We thus model the concentrations of GFP
([GFP]) and excisionase ([X]) using the differential equations

αβ μ δ

αβ μ δ

= −

= −

t
d

t
d

d[X]
d

[X],

d[GFP]
d

[GFP]

3 X X

3 G G (2)

where the scaling d of the expression rates μX and μG reflects an
assumption that the expression of excisionase and GFP is
linearly proportional to the number of ON registers. In this
case the combined parameter αβ3 models the cell-to-cell
uncertainty in protein expression around the nominal rates μ3X
and μ3G, which is set equal for [X] and [GFP] since they are
expressed from the same operon on the same plasmid. Note
that setting μX = 0 models the open-loop behavior, while μX > 0
models closed-loop behavior.
Consider now the closed-loop circuit. The presence of

integrase causes the D registers to begin to flip from OFF to
ON. When d of the D registers have flipped ON, both GFP and
excisionase are expressed. Integrase and excisionase together
cause some of the d ON registers to flip back to OFF, thus
slowing expression of GFP and excisionase. Hence, in addition
to the linear deterministic models described above, we also
need to model the stochastic, digital behavior of the D DNA
registers. The variable d(t) representing the number of ON
registers at time t takes a random walk on the set of integers d
∈ 0, 1, ..., D. Given d(t), the rate at which d jumps to d + 1 is
modeled as

−
+

r D d
K

( )
([I])

([I])ON

4

ON
4 4

This rate is constructed as a scalar parameter rON, representing
a switching rate, multiplying the expected number of OFF
registers that have two integrase dimers bound, thereby being
in the configuration able to stochastically switch to the ON
state. In particular, the integrase concentration-dependent
fraction in this rate is a Hill function with parameter 4,
representing the fact that a total of four integrase molecules
needs to bind to the DNA to be in the correct configuration to
switch the register to the ON position. The parameter KON is a
combined parameter that is a function of the dissociation
constant of integrase dimerization and the dissociation constant
of integrase dimer binding to each DNA recognition site. More
complex models of DNA recombination exist57,58 and may be
used to expand our model in the future. However, at present we
have utilized a simple hill function to model recombination due
to the small number of free parameters it introduces, and to
reduce computational complexity.
The rate at which d jumps to d − 1 is modeled as
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+ +
r d

K K
([I])

([I])
([X])

([X])OFF

4

ON
4 4

4

OFF
4 4

Similarly to the case above, this rate is constructed as a scalar
parameter rOFF, representing a switching rate, multiplying the
expected number of ON registers that have two integrase
dimer/excisionase dimer complexes bound, thereby being in
the configuration able to stochastically switch to the OFF state.
In this equation both the integrase concentration-dependent
fraction and the excisionase concentration-dependent fraction
are Hill functions with parameter 4, since four integrase and
four excisionase molecules are required for an ON register to
flip to OFF. Similarly to the previous case, the parameter KOFF
represents the dissociation constant of excisionase with
integrase.
A diagram summarizing the structure of our model is

depicted in Figure 2. The number d of DNA registers in the
ON state follows the dynamics of a random walk, with time-
varying transition rates that depend on the concentrations [I]
and [X] of integrase and excisionase. In the absence of
feedback, [X] is assumed to equal zero for all time, so that the
switching process only increases the number of ON registers.
Simulation Setup and Parameters. For the open- and

closed-loop cases (μX > 0 and μX = 0, respectively) with input
levels 0, 5, 15, 25, 50, 75, and 100 ng/mL, we simulated 5000
single cells using the mathematical model described above with
the parameters given in Table S13. This was done with values
of αβi sampled evenly (in probability) from the cumulative
distribution function of a log-normal distribution,

μ σ σ−ln ( /2, )1
2

1
2 with μ = 1 and σ1 = 0.5, which gave us

a distribution of cell behaviors from which we could artificially
simulate triplicates. At every half-hour during the simulation the
following process was repeated 2000 times to form and analyze
an equivalent to 2000 sets of biological triplicates (triplicates
are indexed by j): We sampled values α σ σ∈ −ln ( /2, )j 2

2
2
2

for j = 1, 2, 3 with σ2 = 0.25, and then randomly selected 2000
cells with α β α σ σ∈ −ln (ln( ) /2, )j i j 2

2
2
2 from the 5000 single

cells simulations to form each of the three triplicate
populations. Scaling factors for different processes (β1,β2,β3)
are thus sampled independently from a log-normal distribution
with mean αj for each triplicate. This process of sampling cell
populations from a constant pool of simulated cells with a
predefined range of scaling factors was pursued instead of
simulating unique populations to form triplicates as it allows us
to compute reliable statistics much more efficiently. For each
simulated triplicate the mean fluorescence of each of the three
populations was calculated, as was the standard deviation of
these means. After the 2000 repetitions of this process the
mean of the individual triplicate means was calculated, as was
the mean of the triplicate standard deviations, which is the data
presented in (for example) Figure 4a. To give the end-point
data (as in Figure 3a) a simulation of 5000 cells was modeled
for 24 h, after which the process described above was
performed to generate mean triplicate statistics.
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